Article contents
Mechanical and Piezoresistive Properties of Graphite-Filled Polyimide Thin Films
Published online by Cambridge University Press: 15 February 2011
Abstract
The piezoresistive effect of materials is used as the basis for many types of microsensors. Polyimide, a material widely used in microelectronic fabrication, may be made to exhibit this effect by addition of small graphite particles to form a composite material. Polyimide / graphite based piezoresistive films have the advantage of being spin-castable, plasma-processable, highly chemically resistant, and thermally stable up to 400 °C in nitrogen atmospheres. In this work, piezoresistive polyimide films are formed by addition of various amounts (loadings) of graphite particles one micron in diameter or less to DuPont PI-2555 polyimide. Thin films of these materials are spin-cast on silicon wafers, and an in-situ load-deflection measurement technique is used to evaluate the following film properties: piezoresistive coefficient as a function of both strain and graphite loading; Young's modulus as a function of graphite loading; and residual film stress as a function of graphite loading. The observed piezoresistive coefficient is a strong function of graphite loading, with good piezoresistive properties exhibited in the loading range of 15–25 wt% graphite.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 1992
References
REFERENCES
- 1
- Cited by