Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T15:50:45.788Z Has data issue: false hasContentIssue false

Measurement of Lattice Relaxation During Epitaxy Using Tunneling Microscopy: Ge on Si(111)

Published online by Cambridge University Press:  15 February 2011

Silva K. Theiss
Affiliation:
Harvard University, Cambridge, MA02138
D.M. Chen
Affiliation:
Rowland Institute for Science, Cambridge, MA02142
J.A. Golovchenko
Affiliation:
Harvard University, Cambridge, MA02138 Rowland Institute for Science, Cambridge, MA02142
Get access

Abstract

We have used the tunneling microscope to measure the lattice relaxation of Ge islands on Si (111) as a function of their height. Lattice constants on the top surfaces of individual Ge islands can be measured with an uncertainty of approximately one percent. The lattice constant is a continuous, Monotonically increasing function of island height up to 20 bilayers. At heights around 5O bilayers, the island-top lattice parameter may exceed that of bulk Ge. Defects can be observed penetrating the top surface of islands which have heights around 90 bilayers.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Kem, R., LeLay, G., and Metois, J. J. in Current Topics in Materials Science Volume 3, edited by Kaldis, E. (North-Holland, New York, 1979) pp. 131419.Google Scholar
2. Grinfeld, M., Europhys. Lett., 22, 723 (1993);Google Scholar
Spencer, B.J., Voorhees, P.W., and Davis, S.H., J. Appl. Phys 73, 4955 (1993); Phys. Rev. Lett. 67, 3696 (1991);Google Scholar
Srolovitz, D.J., Acta Metall. 37, 621 (1989).Google Scholar
3. Eaglesham, D.J. and Cernilo, M., Phys. Rev. Lett. 64, 1943 (1990).Google Scholar
4. LeGoues, F.K., Copel, M., and Tromp, R.M., Phys. Rev. B 42 11 690 (1990).Google Scholar
5. Snyder, C.W., Orr, B.G., and Munekata, H., Appl. Phys. Lett. 62, 46 (1993);Google Scholar
Snyder, C.W., Orr, B.G., Kessler, D., and Sander, L.M., Phys. Rev. Lett. 66, 3032 (1991);Google Scholar
Guha, S., Madhukar, A., and Rajkumar, K.C., Appl. Phys. Lett. 57, 2110 (1990).Google Scholar
6. Ratsch, C. and Zangwill, A., Surf. Sci. 293, 123 (1993);Google Scholar
Vanderbilt, David and Wickham, L.K. in Evolution of Thin-Film and Surface Microstructure, edited by Thompson, C.V., Tsao, J.Y., and Srolovitz, D.J. (Mater. Res. Soc. Proc. 202, Pittsburgh, PA, 1991) pp. 555560.Google Scholar
7. Sakamoto, T., Sakamoto, K., Miki, K., Okumura, H., Yoshida, S., and Tokumoto, H. in Kinetics of Ordering and Growth at Surfaces, edited by Lagally, M.G. (NATO ASI Series B239, Plenum, New York, 1990) pp. 263282.Google Scholar
8. Williams, A.A., Thornton, J.M.C., Macdonald, J.E., van Silfhout, R.G., van der Veen, J.F., Finney, M.S., Johnson, A.D., and Norris, C.. Phys. Rev. B. 43, 5001 (1991).Google Scholar
9. Mo, Y.-W., Savage, D.E., Swartzentruber, B.S., and Lagally, M.G., Phys. Rev. Lett. 65, 1020 (1990).CrossRefGoogle Scholar
10. Köhler, U., Jusko, O., Pietsch, G., Müller, B., and Henzler, M., Surf. Sci. 248, 321 (1991).Google Scholar
11. Diani, M., Aubel, D., Bischoff, J.L., Kubier, L., and Bolmont, D., Surf. Sci. 291, 110 (1993).Google Scholar
12. Tochihara, Hiroshi and Shimada, Wataru, Surf. Sci. 296, 186 (1993).Google Scholar
13. Meade, Robert D. and Vanderbilt, David, Phys. Rev. B 40, 3905 (1989).Google Scholar