Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:47:57.179Z Has data issue: false hasContentIssue false

Measurement and Modeling of a-Si,Ge:H Solar Cell Performance After High-Intensity Light Soaking

Published online by Cambridge University Press:  01 January 1993

K. Vasanth
Affiliation:
Department of Electrical Engineering, Princeton University,Princeton, NJ 08544
M. Bennett
Affiliation:
Solarex Thin Film Division,Newtown,PA 18940
Get access

Abstract

For a-Si:H solar cells a clear correlation exists between the defect density in the i-layer and cell performance. For cells with a-Si,Ge:H alloy, i-layers, on the other hand, the effect of the properties of the i-layer and its interfaces on cell performance is under debate. To address these questions we light-soaked to saturation and measured a-Si,Ge:H films and cells, and numerically modeled the cell performance using film properties as model inputs. We study three cells with the structure Glass/textured SnO2/p+ a-Si,C:H/i a-Si,Ge:H/n+ a-Si:H/ZnO/Ag. The i-layers are of uniform composition, 150 nm thick and have Tauc gaps of .1.40, 1.46 and 1.50 eV. We modeled the cells with AMPS, a numerical model solving the Poisson equation and the continuity equations for electrons and holes. The defect density in the 1.40 eV film stays constant during light soaking, while the densities in the 1.46 eV and 1.50 eV films rise. The efficiency of the 1.40 eV i-layer cell stays constant, while it drops in the cells with the 1.46 eV and 1.50 eV i-layers. Using the currently accepted input parameters to the model, we obtain cell performances substantially above the experimentally observed values.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wagner, S., Xu, X., Li, X.R., Shen, D.S., Isomura, M., Bennett, M., Delahoy, A.E., Li, X., Arch, J.K., Nicque, J.-L. and Fonash, S.J., Proc. 22th IEEE Photovoltaic Specialists Conference. Las Vegas. 1307 (1991).Google Scholar
2. Li, X.R., Wagner, S., Bennett, M., Hou, J.Y., Rubinelli, F. and Fonash, S.J., Proceedings of the 11th European Photovoltaic Solar Energy Conference. Montreux. Switzerland. (1992), to be published.Google Scholar
3. Kolodzey, J., Aljishi, S., Smith, Z E., Chu, V., Schwarz, R. and Wagner, S., Mat.Res.Soc.Symp.Proc. 70, 237 (1986).Google Scholar
4. Morin, P.A., Wang, N.W. and Wagner, S., Mat.Res.Soc.Symp.Proc. 258, 577 (1992)Google Scholar
5. Xu, X., Yang, J. and Guha, S., Appl. Phys. Lett. 62, 1399 (1993).Google Scholar
6. Nakata, Y., Yokota, A., Sannomiya, H., Moriuchi, S., Inoue, Y., Nomoto, M., Itoh, M. and Tsuji, T., Mat. Res. Soc. Symp. Proc. 219, (1991).Google Scholar
7. Vanecek, M., Kocka, J., Stuchlik, J., Kosicek, Z., Sitka, O. and Triska, A., Solar Energy Matter. 8,411 (1983).Google Scholar
8. Smith, Z E., Chu, V., Shepard, K., Ajishi, S., Slobodin, D., Kolodzey, J. and Wagner, S., Appl.Phys.Lett. 50, 1521 (1987).Google Scholar
9. Bennett, M. and Podlesny, R., Proc. 21st IEEE Photovoltaic Specialists Conference. Orlando. 1438 (1990).Google Scholar
10. Arch, J.K., Rubinelli, F.A., Hou, J.Y. and Fonash, S.J., J.Appl.Phys. 69, 7057 (1991).Google Scholar
11. McElheny, P.J., Arch, J.K., Lin, H.S. and Fonash, S.J., J.Appl.Phys. 64, 1254 (1982).Google Scholar
12. Wang, N.W. and Morin, P.A., personal communication.Google Scholar
13. Conde, J.P., Chu, V., Shen, D.S., Ajishi, S., Tanaka, S. and Wagner, S., Technical Digest of the International PVSEC-3. Tokvo. Japan. 717 (1987).Google Scholar
14. Tauc, J., Grigorivici, R. and Vancu, A., Phys. Stat. Sol 15, 627 (1966).Google Scholar