No CrossRef data available.
Published online by Cambridge University Press: 26 February 2011
GaNyAs1-x-yBix alloy lattice-matched to GaAs has been grown by molecular beam epitaxy (MBE). The lattice-matching of GaNyAs1-x-yBix to GaAs was investigated by X-ray diffraction measurements on a series of GaNyAs1-x-yBix with various GaN molar fractions. GaNyAs1-x-yBix lattice-matched to GaAs was obtained, which was confirmed by its diffraction peak overlapped with the peak of GaAs. Photoluminescence (PL) of 1.3 μm was observed from GaNyAs1-x-yBix epilayer matched to GaAs at room temperature. The temperature coefficient of the PL peak energy in a temperature range 150–300K for GaNyAs1-x-yBix was 1/3 of InGaAsP with a bandgap corresponding to 1.3-μm emission. Both lattice-matching to GaAs and bandgap adjustment to 1.3-μm waveband were achieved for GaNyAs1-x-yBix for the first time. This alloy will lead to the fabrication of laser diodes with an emission of temperature insensitive wavelength.