Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-20T09:34:08.709Z Has data issue: false hasContentIssue false

Mbe Growth pf Ca5Sr5F2 on (100), (111), (511), and (711) GaAs Surfaces

Published online by Cambridge University Press:  25 February 2011

K. Young
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
S. Horng
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
A. Kahn
Affiliation:
Department of Electrical Engineering, Princeton University, Princeton, New Jersey 08544
Julia M. Phillips
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ 07974
Get access

Abstract

We have used molecular beam epitaxy to grow CaxSr1−xF2 films of various thicknesses on GaAs substrates with different orientations, i.e. (100), (111)A, (511)A, (511)B, (711)A and (711)B. On all orientations, the same crystallographic direction is normal to the surface in both the substrate and fluoride film. For all orientations except (111), the fluoride surface is reconstructed with (111) facets. Without annealing, the best crystallinity is obtained for the (100), (111) and (511)B orientations.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tu, C. W., Wang, S. J., Phillips, J. M., Gibson, J. M., Stall, R. A., and Wunder, R. J., J. Vac. Sci. Technol. B4, 637 (1986).CrossRefGoogle Scholar
2. Hoffman, R. A., Sinharoy, S., and Farrow, R. F. C., Appl. Phys. Lett, 47, 1068 (1985).CrossRefGoogle Scholar
3. Siskos, S., Fontaine, C., and Munoz-Yague, A., J. Appl. Phys. 56, 1642 (1984).Google Scholar
4. Fontaine, C., Munoz-Yague, A., Heral, H., Rocher, L., J. Appl. Phys. 62, 2807 (1987).CrossRefGoogle Scholar
5. Ishiwara, H., Tsutsui, K., Asano, T., and Furukawa, S., Jap. J. Appl. Phys., 23, L803 (1984).CrossRefGoogle Scholar
6. Tsutsui, K., Ishiwara, H., Asano, T., and Furukawa, S., Mat. Res. Soc. Symp. Proc. 47, 93 (1985).CrossRefGoogle Scholar
7. Schowalter, L. J., Fathauer, R. W., Goehner, R.P., Turner, L. G., and DeBlois, R. W., J. Appl. Phys. 58, 302 (1985).CrossRefGoogle Scholar
8. Young, K. and Kahn, A., J. Vac. Sci. Technol. B4, 1091 (1986); J. Vac. Sci. Technol. A5, 654 (1987).Google Scholar
9. Sangster, R. C., in Compound Semiconductors, Willardson, R. K. and Goering, H. L. edit. (Reinhold, London, 1962), Vol. 1, p. 241.Google Scholar
10. Olsen, G. H., Zamerowski, T. J., and Hawrylo, F. Z., J. Cryst. Growth 59, 654 (1982).Google Scholar
11. Fathauer, R. W. and Schowalter, L. J., Appl. Phys. Lett. 45, 520 (1984).Google Scholar
12. Ishiwara, H. and Asano, T., Appl. Phys. Lett. 40, 66 (1982).Google Scholar
13. Young, K. and Kahn, A., (to be submitted)Google Scholar
14. Young, K., Kahn, A. and Phillips, J. M., (to be submitted)Google Scholar