Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-29T07:48:38.328Z Has data issue: false hasContentIssue false

Mbe Growth and Properties of HgCdTe Long Wave and Very Long Wave Infrared Detectors

Published online by Cambridge University Press:  10 February 2011

R. D. Rajavel
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
O.K. Wu
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
J.E. Jensen
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
C.A. Cockrum
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
G.M. Venzor
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
E.A. Patten
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
P.M. Goetz
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
D.B. Leonard
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
S.M. Johnson
Affiliation:
Santa Barbara Research Center, Goleta, CA 93117
Get access

Abstract

structural, optical and electrical properties were evaluated. Significant progress has been made toward the growth of high performance HgCdTe devices by molecular beam epitaxy. Long wave infrared detectors operating at 9.9 μm at 78K exhibited a mean RoAo product of 1170 Ωcm2 at 0-fov. Very long wave infrared detectors operating at 14 μm at 78K exhibited a mean RoA product of 3.5 Ωcm2 at f/2 fov. These values represent the state-of-the- art for molecular beam epitaxially grown HgCdTe detectors.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Scribner, D.A., Kruer, M.R., and Killiany, J.M., Proc. IEEE, 79, 66 (1991).Google Scholar
2. Tung, T., DeArmond, L.V., Herald, R.F., Herning, P.E., Kalisher, M.H., Olson, D.A., Risser, R.F. and Tighe, S.J., SPIE 1735, 109 (1992).Google Scholar
3. Wu, O.K., Jamba, D.M., Kamath, G.S., Chapman, G.R., Johnson, S.M., Peterson, J.M., Kosai, K., and Cockrum, C.A., J. Electron. Materials, 24, 423 (1995).Google Scholar
4. Arias, J.M., Pasko, J.G., Zandian, M., Kozlowski, L.J., DeWames, R.E., Opt. Engineering, 33, 1422 (1994).Google Scholar
5. Wu, O.K., Jamba, D.N., and Kamath, G.S., J. Crystal Growth, 127, 365 (1993).Google Scholar
6. Hansen, G.L., Schmit, J.L., and Casselman, Y.N., J. Appl. Phys. 53. 7099 (1982).Google Scholar
7. Rajavel, R. D., Jamba, D.M., Wu, O.K., Roth, J.A., Brewer, P.D., Jensen, J.E., Cockrum, C.A., Venzor, G.M., and Johnson, S.M., to be published in J. Electron. MaterialsGoogle Scholar
8. Pultz, G.N., Norton, P.W., Kruger, E.E. and Reine, M.B., J. Vac. Sci. Technol. B9 1724 (1991).Google Scholar
9. Patten, E.A., Kalisher, M.H., Chapman, G.R., Fulton, J.M., Huang, C.Y., Norton, P.R., Ray, M., and Sen, S., B9, 1746 (1991).Google Scholar