Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T15:43:19.260Z Has data issue: false hasContentIssue false

A Mathematical Representation of the ion Nitriding Process

Published online by Cambridge University Press:  25 February 2011

J -L. Marchand
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A.
D. Ablitzer
Affiliation:
Laboratoire de Génie Metallurgique Ecole des Mines Parc de Saurupt 54000, Nancy, FRANCE
J. Szekely
Affiliation:
Department of Materials Science and Engineering Massachusetts Institute of Technology Cambridge, MA 02139 U.S.A.
H. Michel
Affiliation:
Laboratoire de Génie Metallurgique Ecole des Mines Parc de Saurupt 54000, Nancy, FRANCE
M. Gantois
Affiliation:
Laboratoire de Génie Metallurgique Ecole des Mines Parc de Saurupt 54000, Nancy, FRANCE
Get access

Abstract

A mathematical formulation and computed results are presented to describe the velocity fields, temperature fields and concentration of the activated species in an ion nitriding process, operated at 1–5 torr pres-sure. The theoretical predictions, which are based on the two-dimensional trasnport equations and on a model for computing the electron number density, gave results in broad agreement with experimental findings reported by others for similar systems.

Type
Research Article
Copyright
Copyright © Materials Research Society 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Michel, H. and Gantois, M.: Proc. 18th Intl. Conf. on Heat Treatment of Materials, ASM, Detroit, MI (May, 1980).Google Scholar
2. Gerardin, D., Morniroli, J.P., Michel, H. and Gantois, M.: J. Mat. Sci. 16: 159 (1981).Google Scholar
3. Hajjaji, M. El, Foos, M., Michel, H. and Gantois, M.: Scripta Metall. 17: 879 (1983).Google Scholar
4. Leroy, C., Michel, H. and Gantois, M.: J. Mat. Sci. 21: 3467 (1986).Google Scholar
5. Petitjean, L. and Ricard, A., J. Phys. D, 17: 919 (1984).Google Scholar
6. Hudis, M., J. Appl. Phys. 44: 14891496 (1973).Google Scholar
7. Ricard, A., Topical invited lecture, XVIIth ICPIG, Budapest (1985).Google Scholar
8. Gordiets, B.F., Mamedov, Sh. S. and Shelepin, L.A.: Vibrational kinetics of anharmonic oscillators under essentially non-equilibrium condi-tions. Sov. Phys. JETP, 40(4): 640 (1975).Google Scholar
9. Rhee, S., Szekely, J. and Ilegbusi, O.J.: On three-dimensional transport phenomena in CVD processes. Submitted to J. Electrochem. Soc. (1987).Google Scholar
10. Capitelli, M., Dilonardo, M. and Gorse, C.: Coupled solution of the collisional Boltzman equation for electrons and heavy particle master equation in nitrogen. Chem. Phys. 56: 2942 (1981).Google Scholar
11. Marchand, J.L., Michel, H., Gantois, M. and Ricard, A.: Proc. 1st Intl. Conf. on Ion Nitriding, ASME, Cleveland, Ohio (1986).Google Scholar