Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T18:24:14.585Z Has data issue: false hasContentIssue false

The Materials Properties of a Nickel Based Composite Contact to n-Sic for Pulsed Power Switching

Published online by Cambridge University Press:  15 March 2011

M. W. Cole
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005
P. C. Joshi
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005
F. Ren
Affiliation:
Department of Chemical Engineering, University of FL, Gainesville, FL 32611
C. W. Hubbard
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005
M. C. Wood
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005
M. H. Ervin
Affiliation:
U.S. Army Research Laboratory, Aberdeen Proving Ground, MD 21005
Get access

Abstract

Novel Ni/WSi/Ti/Pt composite Ohmic contacts to n-SiC were investigated as a function of annealing temperatures up to 1000°C. The onset of Ohmic behavior occurred at annealing temperatures of 900°C. Annealing at temperatures between 950°and 1000°C yielded excellent Ohmic behavior. At these temperatures the contact-SiC interface was smooth, defect free and characterized by a narrow Ni2Si reaction region. The annealed contacts possessed atomically smooth surface morphologies and exhibited minimal contact expansion. The residual carbon, resultant from SiC decomposition, was constrained by reaction with the WSi and Ti metallization layers forming carbide phases of W and Ti. The locations of the carbide phases were spatially distant from the metal semiconductor interface. Our results demonstrate that the Ni/WSi/Ti/Pt composite Ohmic contact maintains the desirable electrical properties associated with Ni contacts and possess excellent interfacial, compositional and surface properties which are required for reliable high power and high temperature device operation.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Neudeck, Philip G., J. of Electronic Materials 24, 283 (1995).Google Scholar
2. Pearton, S. J., Ren, F., Shul, R. J., and Zolper, J. C., Electrochemical Society Proc. 97–1, 138 (1997).Google Scholar
3. Melloch, M. R., and Cooper, J. A., MRS Bulletin 23, 42 (1997).Google Scholar
4. Chow, T. P. and Tyagi, R., IEEE Trans. Electron Devices 41, 1481 (1994).Google Scholar
5. Chow, T. P. and Ghezzo, M., Mat. Res. Soc. Proc. 423, 9 (1996).Google Scholar
6. Porter, L. M. and Davis, R. F., Mat. Sci. and Eng. B34, 83 (1995).Google Scholar
7. Crofton, J., Porter, L. M. and Williams, J. R., Phys. Stat. Sol. 202, 581 (1997).Google Scholar
8. Cole, M.W., Hubbard, C., Demaree, D., and Fountazoulas, C. G., Natarajan, A., Miller, R. A., Harris, D.. Xie, K., and Searson, P., Electrochemical Society Proc. 28, 71 (1998).Google Scholar
9. Crofton, J., McMullin, P. G., Williams, J. R., and Bozack, M. J., J. Appl. Phys. 77, 1317 (1995).Google Scholar
10. Crofton, J., Beyer, L., Hogue, T., Siergiej, R. R., Mani, S., Cassidy, J. B., Oder, T. N., Williams, J. R., Luckowski, E. D., Issacs-Smith, T., Iyer, V. R., and Mahney, S. E., Proc. of the Fourth Int'l. High Temperature Electronics Conference 4, 84 (1998).Google Scholar
11. Marinova, Ts., Kakanakova-Georgieva, A., Krastev, V., Kakanakov, R., Neshev, M., Kassamakova, L., Noblanc, O., Arnodo, C., Cassette, S., Brylinski, C., Pecz, B., Radnoczi, G., and Vincze, Gy., Materials Science and Engineering B46, 223 (1997).Google Scholar
12. Luckowski, E. D., Williams, J. R., Bozack, M. J., Issacs-Smith, T., Crofton, J., Mat. Res. Soc. Symp. Proc. 423, 119 (1996).Google Scholar
13. Adams, S., Severt, C., Lenord, J., Liu, S., and Smith, S.R., Proc of the Second Int'l. High Temperature Electronics Conference 2, 9 (1994).Google Scholar
14. Goesmann, Fred and Schmid-Fetzer, Rainer, Materials Science and Engineering B46, 357 (1997).Google Scholar
15. Porter, L. M., Davis, R. F., Bow, J. S., Kim, M. J., Carpenter, R. W., and Glass, R. C., J. Mater. Res. 10, 668 (1995).Google Scholar
16. Waldrop, J. R. and Grant, R. W., Appl. Phys. Lett. 62, 2685 (1993).Google Scholar
17. Getto, R., Freytag, J., Kopnarski, M., Oechsner, H., Material Science and Engineering B61–62, 270 (1999).Google Scholar
18. Kakanakova-Georgieva, A., Marinova, Ts., Noblanc, O., Arnodo, C., Cassette, S., Brylinski, C., Thin Solid Films 343–344, 637 (1999).Google Scholar
19. Rastegaeva, M. G., Andreev, A. N., Petrov, A. A., Babanin, A. I., Yagovkina, M. A., and Nikitina, I. P., Material Science and Engineering B46, 254 (1997).Google Scholar