Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T04:13:03.084Z Has data issue: false hasContentIssue false

Materials for Solid State Lighting

Published online by Cambridge University Press:  01 February 2011

S.G. Johnson
Affiliation:
Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, CA 94720
J. A. Simmons
Affiliation:
Sandia National Laboratory, P.O. Box 5800, Albuquerque, NM 87185
Get access

Abstract

Dramatic improvement in the efficiency of inorganic and organic light emitting diodes (LEDs and OLEDs) within the last decade has made these devices viable future energy efficient replacements for current light sources. However, both technologies must overcome major technical barriers, requiring significant advances in material science, before this goal can be achieved. Attention will be given to each technology associated with the following major areas of material research: 1) material synthesis, 2) process development, 3) device and defect physics, and 4) packaging.

The discussion on material synthesis will emphasize the need for further development of component materials, including substrates and electrodes, necessary for improving device performance. The process technology associated with the LEDs and OLEDs is very different, but in both cases it is one factor limiting device performance. Improvements in process control and methodology are expected to lead to additional benefits of higher yield, greater reliability and lower costs. Since reliability and performance are critical to these devices, an understanding of the basic physics of the devices and device failure mechanisms is necessary to effectively improve the product. The discussion will highlight some of the more basic material science problems remaining to be solved. In addition, consideration will be given to packaging technology and the need for the development of novel materials and geometries to increase the efficiencies and reliability of the devices. The discussion will emphasize the performance criteria necessary to meet lighting applications, in order to illustrate the gap between current status and market expectations for future product.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Holonyak, N. J., Bevaqua, S. F., Appl. Phys. Lett. 1, 82 (1962)Google Scholar
2. Kuo, C. P., e. al., Appl. Phys. Lett. 57, 2937 (1990)Google Scholar
3. Sugawara, H., Ishikawa, M., Hatakoshi, G., Appl. Phys. Lett. 58, 1010 (1991)Google Scholar
4. Nakamura, S., e. al., Jpn. J. Appl. Phys. 34, L1332 (1995).Google Scholar
5. Jones, E. D., ed., “Light Emitting Diodes (LEDs) for General Illumination, an OIDA Technology Roadmap” (2000).Google Scholar
6. Zauner, A. R. A., et al., J. Crystal Growth 210, 435 (2000)Google Scholar
7. Schowalter, L. J., e. al., Appl. Phys. Lett. 76, 985 (2000)Google Scholar
8. Nakamura, S., paper presented at the SPIE, San Jose, CA 1999.Google Scholar
9. Ashby, C. I. H., e. al., Appl. Phys. Lett. 77, 3233 (2000)Google Scholar
10. Wilcoxon, J. P., Samara, G. A., Appl. Phys. Lett. 74, 3164 (1996)Google Scholar
11. Chui, H., e. al., Semiconductors and Semimetals 64, 69 (2000)Google Scholar
12. Krames, M. R., e. al., Appl. Phys. Lett. 75, 2365 (1999)Google Scholar
13. Boroditsky, M., e. al., Appl. Phys. Lett. 75, 1036 (1999)Google Scholar
14. Wierer, J. J., e. al., Appl. Phys. Lett. 78, 3379 (2001)Google Scholar
15. Tang, C. W., VanSlyke, S. A., Appl. Phys. Lett. 51, 913 (1987)Google Scholar
16. Burroughes, J. H. et al., Nature 347, 539 (1990)Google Scholar
17. Braun, D., Heeger, A. J., Appl. Phys. Lett. 58, 1982 (1991)Google Scholar
18. Adachi, C., Baldo, M. A., Thompson, M. E., Forrest, S. R., Journal of Applied Physics 90, 50485051 (2001).Google Scholar
19. Baldo, M. A., O'Brien, D. F., Thompson, M. E., Forrest, S. R., Physical Review BCondensed Matter 60, 1442214428 (1999).Google Scholar
20. Hoshino, S., Suzuki, H., Appl. Phys. Lett. 69, 224 (1996)Google Scholar
21. Baldo, M. A., Thompson, M. E., Forrest, S. R., Nature 403, 750753 (2000).Google Scholar
22. Cao, Y., Parker, I. D., Yu, G., Zhang, C., Heeger, A. J., Nature 397, 414417 (1999).Google Scholar
23. Wilson, J. S. et al., Nature 413, 828831 (2001).Google Scholar
24. Thompson, J. et al., Applied Physics Letters 79, 560562 (2001).Google Scholar
25. Tasch, S. et al., Appl. Phys. Lett. 71, 2883 (1997)Google Scholar
26. Adachi, C. et al., Applied Physics Letters 79, 20822084 (2001).Google Scholar
27. Schnitzer, I., Yablonovitch, E., Appl. Phys. Lett. 63, 2174 (1993)Google Scholar
28. Yamasaki, T., e. al., Appl. Phys. Lett. 76, 1243 (2000)Google Scholar
29. Gu, G., e. al., Opt. Lett. 22, 396 (1997)Google Scholar
30. Madigan, C., Lu, M. H., Strum, J. C., Appl. Phys. Lett. 76, 1650 (2000)Google Scholar
31. Lupton, J. M., Matterson, B. J., Samuels, I. D. W., Appl. Phys. Lett. 77 (2000).Google Scholar
32. McElvain, J. et al., J. Applied Physics 80, 6002 (1996)Google Scholar
33. Kolosov, D. et al., Journal of Applied Physics 90, 32423247 (2001).Google Scholar