No CrossRef data available.
Article contents
Materials Design and Processings for Industrial High-Strain Rate Superplastic Forming
Published online by Cambridge University Press: 10 February 2011
Abstract
The optimum materials design in microstructural control could be developed for the highstrain-rate superplastic materials in the industrial scale. In the present work, it is reported that the high-performance-engine pistons with near-net-shape can be fabricated by the superplastic forging technology in the high-strain-rate superplastic PM Al-Si based alloy, which is produced by using this optimum materials design.
- Type
- Research Article
- Information
- Copyright
- Copyright © Materials Research Society 2000
References
1.
Nieh, T.G., Gilman, P.S. and Wadsworth, J., Scripta metall., 19, p. 1375 (1985).10.1016/0036-9748(85)90070-5Google Scholar
2.
Bieler, T.R., Nieh, T.G., Wadsworth, J. and Mukherjee, A.K., Scripta metall., 22, p. 81 (1988).10.1016/S0036-9748(88)80310-7Google Scholar
3.
Mabuchi, M. and Higashi, K., in Key Eng. Mater., edited by Newaz, G.M., Neber-Aeschbacher, H. and Wöhlbier, F.H. (Trans Tech Publications, Zürich, Switzerland, 1995), vol. 104–107, p. 225.Google Scholar
4.
Mabuchi, M., Higashi, K. and Langdon, T.G., Acta metall. mater., 42, p. 1739 (1994).10.1016/0956-7151(94)90384-0Google Scholar
5.
Mabuchi, M. and Higashi, K., Mater. Sci. Eng., A179/AI80, p. 625 (1994).10.1016/0921-5093(94)90280-1Google Scholar
6.
Mabuchi, M. and Higashi, K., Mater. Trans. JIM, 35, p. 399 (1994).10.2320/matertrans1989.35.399Google Scholar
7.
Mabuchi, M. and Higashi, K., Mater. Trans. JIM, 36, p. 420 (1995).10.2320/matertrans1989.36.420Google Scholar
8.
Higashi, K., Okada, T., Mukai, T., Tanimura, S., Nieh, T.G. and Wadsworth, J., Scripta metall., 26, p. 185 (1992).10.1016/0956-716X(92)90170-JGoogle Scholar
9.
Higashi, K., Okada, T., Mukai, T. and Tanimura, S., Scripta metall., 25, p. 2053 (1991).10.1016/0956-716X(91)90273-4Google Scholar
10.
Higashi, K., Okada, T., Mukai, T. and Tanimura, S., Scripta metall., 26, p. 761 (1992).10.1016/0956-716X(92)90434-GGoogle Scholar
11.
Higashi, K., Okada, T., Mukai, T. and Tanimura, S., Mater. Sci. Eng., A159, p. LI (1992).Google Scholar
12.
Matsuki, K., Staniek, G., Nakagawa, H. and Tokizawa, M., Z Metallkde., 79, p. 231 (1988).Google Scholar
13.
Furushiro, N., Hori, S. and Miyake, Y., in Superplasticity in Advanced Materials, edited by Hori, S., Tokizane, M. and Furushiro, N. (The Japan Society for Research on Superplasticity, Tokyo, 1991), p. 557.Google Scholar
14.
Higashi, K., Superplasticity, 60 Years after Pearson, Ed. by Ridley, N., The Institute of Materials, London, England, (1995), p. 93–102.Google Scholar
15.
Langdon, T.G., Mater. Sci. Forum, 304–306, p. 13(1999).10.4028/www.scientific.net/MSF.304-306.13Google Scholar
17.
Microstructures and propertiesin aluminum, J. Inst. Metals. (1998) p. 239 and p. 244.Google Scholar
19.
Mabuchi, M. and Higashi, K., J. Mater. Res.
13, p. 640 (1998).10.1557/JMR.1998.0080Google Scholar
21.
Raj, R. and Ashby, M.F., Acta Metall.
23, p. 653 (1975).10.1016/0001-6160(75)90047-4Google Scholar
22.
Yoshino, M., Aoki, T., Kasai, F. and Kobiki, K., Kubota Tech. Rept., No.29, p. 7 (1995).Google Scholar
23.
The development of the partial manufacture technic in high strain rate superplasticity on an explanatory meeting, Kubota Co. (1998)p. 8 and p. 12.Google Scholar
24.
Fujino, S., Kuroishi, N., Yoshino, M., Mukai, T., Okanda, Y. and Higashi, K., Scripta Mater., 37, p. 673 (1997).10.1016/S1359-6462(97)00153-XGoogle Scholar