Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:49:29.875Z Has data issue: false hasContentIssue false

Materials and Device Characteristics of InAlAs/InGaAs HEMTs

Published online by Cambridge University Press:  25 February 2011

Pin Ho
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
M. Y. Kao
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
P. C. Chao
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
K. H. G. Duh
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
P. M. Smith
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
P. A. Martin
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
S. M. J. Liu
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
K. C. Hwang
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
J. M. Ballingall
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
T. Yu
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
A. W. Swanson
Affiliation:
Electronics Laboratory General Electric Company Syracuse, New York 13221
Get access

Abstract

High electron mobility transistors (HEMTs) based on the InAlAs/InGaAs heterostructure have been grown on InP by molecular beam epitaxy. At room temperature, typical sheet charge densities of 2.1–3.0×1012 cm−2 and Hall electron mobilities over 10000 cm2 /V-s are obtained. An electron mobility as high as 13000 cm2 /V-s is achieved with a pseudomorphic Iny Ga1−y As channel and a y value of 0.70.

HEMTs with a T- or Γ-shaped gate and with gate lengths ranging from 0.1–0.25 urn have been fabricated. A record low noise figure of 0.7 dB with an associated gain of 8.6 dB at 62 GHz has been achieved with 0.1 μm Γ-gate devices, while T-gate devices exhibit a minimum noise figure of 1.2 dB with 7.2 dB associated gain at 94 GHz. Separately, a record fmax value of 455 GHz was determined by extrapolating at -6 dB/octave from the measured gain of 13.6 dB at 95 GHz.

Power HEMTs using a double heterojunction structure exhibit a record peak power-added efficiency (P.A.E.) of 49% with 8.6 dB power gain and 0.30 W/mm power density measured at 60 GHz. When biased and tuned for maximum output power, our best 60 GHz output power density to date is 0.52 W/mm with 33% P.A.E. and 5.9 dB power gain using a single heterojunction HEMT scheme with pseudomorphic channel. A similar device also yields peak P.A.E. of 26% with 0.20 W/mm power density and 4.9 dB gain at 94 GHz. These results represent the highest P.A.E.S and power gains ever reported for any transistor at these frequencies.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Ng, G.-I., Pavlidis, D., Jaffe, M., Singh, J. and Chan, H.-F., IEEE Trans. Elect. Dev. 36 (10) 2249 (1989).Google Scholar
[2] Mishra, U.K., Brown, A.S. and Rosenbaum, S.E., 1988 IEDM Technical Digest, p. 180.Google Scholar
[3] Chough, K.B., Chang, T.Y., Feuer, M.D. and Lalevic, B., Electronics Lett. 28 (3) 329 (1992).Google Scholar
[4] Tacaro, M., Sygiyama, Y., Takeuchi, Y. and Ueno, Y., J. Elect. Materials 20 (12) 1081 (1991).Google Scholar
[5] Nguyen, L.D., Brown, A.S., Thompson, M.A., Jelloian, L.M., Larson, L.E. and Matloubian, M., IEEE Elect. Dev. Lett. 13 (3) 143 (1992).Google Scholar
[6] Streit, D.C., Tan, K.L., Liu, P.H., Chow, P.D., Velebir, J.R., Lai, R., Block, T.R., Stolt, K.S. and Wojtowicz, M., in Proceedings of the Fourth International Conference on Indium Phosphide and Related Materials, 1992, p. 682.Google Scholar
[7] Kao, M.Y., Liu, S.M.J., Duh, K.H.G., Chao, P.C., Ho, P. and Swanson, A. W., presented at the Fourth International Conference on Indium Phosphide and Related Materials, 1992.Google Scholar
[8] Mishra, U.K., Brown, A.S., Rosenbaum, S.E., Cooper, C.E., Pierce, M.W., Delaney, M.J., Vaughn, S. and White, K., IEEE Elect. Dev. Lett. 9 (12) 647 (1988).Google Scholar
[9] Ho, P., Kao, M.Y., Chao, P.C., Duh, K.H.G., Ballingall, J.M., Allen, S.T., Tessmer, A.J. and Smith, P.M., Electronics Lett. 27 (4) 325 (1991).Google Scholar
[10] Kao, M.Y., Smith, P.M., Chao, P.C. and Ho, P., in Proceedings of 1991 IEEE/Cornell Conference, p. 469.Google Scholar
[11] Smith, P.M., Chao, P.C., Ho, P., Duh, K.H., Kao, M.Y., Ballingall, J.M., Allen, S.T. and Tessmer, A., in Proceedings of the Second International Conference on Indium Phosphide and Related Materials, 1990, p. 39.Google Scholar
[12] Pao, Y.-C., Nishimoto, C., Riaziat, M., Majidi-Ahy, R., Bechtel, N.G. and Harris, J.S. Jr, IEEE Elect. Dev. Lett. 11 (7) 312 (1990).Google Scholar
[13] Aina, O., Burgess, M., Mattingly, M., Meerschaert, A., O'Connor, J.M., Tong, M., Ketterson, A. and Adesida, I., IEEE Elect. Dev. Lett. 13 (5) 300 (1992).Google Scholar
[14] Boos, J.B. and Kruppa, W., Electronics Lett. 27 (21) 1909 (1991).Google Scholar
[15] Bahl, S.R. and del Alamo, J.A., IEEE Elect. Dev. Lett. 13 (4) 195 (1992).Google Scholar
[16] Ng, G.I., Pavlidis, D., Quillec, M., Chan, Y.J., Jaffe, M.D. and Singh, J., Appl. Phys. Lett. 52 (9) 728 (1988).Google Scholar
[17] Ng, G.I. and Pavlidis, D., IEEE Trans. Elect. Dev. 38 (4) 862 (1991).Google Scholar
[18] Matloubian, M., Nguyen, L.D., Brown, A.S., Larson, L.E., Melendes, M.A. and Thompson, M.A., 1991 IEEE MTT-S Digest, Vol. 111, p. 721.Google Scholar
[19] Ng, G.I., Pavlidis, D., Tutt, M., Oh, J.-E. and Bhattacharya, P.K., IEEE Elect. Dev. Lett. 10 (3) 114 (1989).Google Scholar
[20] Gueissaz, F., Houdre, R. and Ilegems, M., J. Crystal Growth 111 470 (1991).Google Scholar
[21] Salokatve, A. and Hovinen, M., J. Appl. Phys. 67 (7) 3378 (1990).Google Scholar
[22] Ferrari, C., Franzosi, P., Gastaldi, L. and Taiariol, F., J. Appl. Phys. 63 (8) 2628 (1988).Google Scholar
[23] Estrera, J.P., Duncan, W.M., Kao, Y.C., Liu, H.Y. and Beam, E.A., J. Elect. Materials 20 (12) 983 (1991).Google Scholar
[24] Brown, A.S., Mishra, U.K., Henige, J.A. and Delaney, M.J., J. Appl. Phys. 64 (7) 3476 (1988).Google Scholar
[25] Houdre, R., Gueissaz, F., Gailhanou, M., Ganiere, J.-D., Rudra, A. and Ilegems, M., J. Crystal Growth 111 456 (1991).Google Scholar
[26] Ho, P., Chao, P.C., Duh, K.H.G., Jabra, A.A., Ballingall, J.M. and Smith, P.M., 1988 IEDM Technical Digest, p. 184.Google Scholar
[27] Chao, P.C., Tessmer, A.J., Duh, K.H.G., Ho, P., Kao, M.-Y., Smith, P.M., Ballingall, J.M., Liu, S.-M. J. and Jabra, A.A., IEEE Elect. Dev. Lett. 11 (1) 59 (1990).Google Scholar
[28] Pao, Y.C., Nishimoto, C., Majidi-Ahy, R., Archer, J., Bechtel, G. and Harris, J.S. Jr, IEEE Trans. Elect. Dev. 10 2165 (1990).Google Scholar
[29] Mishra, U.K., Brown, A.S., Jelloian, L.M., Thompson, M., Nguyen, L.D. and Rosenbaum, S.E., 1989 IEDM Technical Digest, p. 101.Google Scholar
[30] Duh, K.H.G., Chao, P.C., Liu, S.M.J., Ho, P., Kao, M.Y. and Ballingall, J.M., IEEE Microwave and Guided Wave Lett. 1 (5) 114 (1991).Google Scholar
[31] Duh, K.H.G., Chao, P.C., Ho, P., Kao, M.Y., Smith, P.M., Ballingall, J.M. and Jabra, A.A., 1989 IEEE MTT-S Digest, Vol. 11, p. 805.Google Scholar
[32] Fukui, H., IEEE Trans. Elect. Dev. 26 1032 (1979).Google Scholar
[33] Smith, P.M., Ho, P., Hwang, K.C. and Chao, P.C., submitted to IEEE Microwave and Guided Wave Lett.Google Scholar