Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:09:34.407Z Has data issue: false hasContentIssue false

Material Requirements for Lithium-Ion Batteries

Published online by Cambridge University Press:  15 February 2011

Like Xie
Affiliation:
Rayovac Corporation, 630 Forward Drive, Madison, WI 53711
David Fouchard
Affiliation:
Rayovac Corporation, 630 Forward Drive, Madison, WI 53711
Sid Megahed
Affiliation:
Rechargeable Battery Industries, Ltd., Madison, WI 53711
Get access

Abstract

Lithium-ion (or ‘rocking-chair’) batteries with lithiated oxide cathodes and carbon anodes are finding increasing acceptance in many electronic applications including low rates (e.g., memory backup, real time clock, bridge function) and high rates (e.g., laptop computers, cellular phones, camcorders, etc.). This technology offers significant improvements in safety relative to cells using lithium metal anodes, with only a modest reduction in energy density. In general, materials for lithium-ion cells are chosen to minimize the energy density penalties associated with replacing the lithium electrode with an intercalation electrode. In this review paper, we describe the properties of the cathode, anode and electrolyte, and discuss requirements for improved materials for advanced lithium-ion systems. Consideration is given to energy density, rate capability, cycleability and thermal stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Wilkinson, D.P., Dahn, J.R., von Sacken, U. and Fouchard, D.T., Abstracts 53 and 54, p. 85 and 87, The Electrochemical Society Extended Abstracts, Vol. 90–2, Seattle, WA October 14-19 (1990).Google Scholar
2 Fouchard, D. and Lechner, L., Electrochimica Acta 38, 1193 (1993).Google Scholar
3 Dahn, J.R. et al. in Lithium Batteries - New Materials, Developments and Perspectives, pl, Edited by Pistoia, G.. (Elsevier, Amsterdam 1994).Google Scholar
4 Goodenough, J.B., Wickham, D.G. and Groft, W.J., J. Appl. Phys., 29, 382 (1958).Google Scholar
5 Ohzuku, T., in Lithium Batteries, ed. Pistoia, G. (Elsevier Science Pu., London, 1994).Google Scholar
6 Thackeray, M.M. and Goodenough, J.B., U.S. Patent 4, 507, 371, (1985).Google Scholar
7 Nagaura, T. and Tozawa, K., Prog. Batt. Solar Cells, 9, 209 (1990).Google Scholar
8 Plitcha, E., Slane, S., Uchiyama, M., Salomon, M., Chua, D. and Lin, W.H., J. Power Sources, 21, 25 (1987).Google Scholar
9 Plicha, E., Salomon, M., Slane, S., Uchiyama, M., Chua, D., Ebner, W.B. and Lin, W.H., J. Electrochem. Soc., 136, 1865 (1989).Google Scholar
10 Reimers, J.N., Dahn, J.R., J. Electrochem. Soc. 139, 2091 (1992).Google Scholar
11 Li, W., Reimers, J.N. and Dahn, J.R., Solid State Ionics, 67, 123 (1993).Google Scholar
12 Guyomard, D. and Tarascon, J. M., "High-Voltage-Stable Electrolytes for Li1+xMn2O4/Carbon Secondary Batteries", U.S. Patent No. 5,192,629 (1993).Google Scholar
13 Pistoia, G. and Zane, D., The Twelfth Int. Seminar on Primary and Secondary Battery Technology and Applications, Deerfield Beach, Florida, USA, Mar. 6-9, (1995).Google Scholar
14 Atlung, S., Progr. in Batteries and Solar Cells, 2, 96 (1979).Google Scholar
15 Ilchev, N., Manev, V. and Hampartzumian, K., J. Power Sources, 25, 177 (1989).Google Scholar
16 Momchilov, A., Manev, V., Nassalevska, A. and Kozawa, A., J. Power Sources 41, 305314 (1993).Google Scholar
17 Manev, V., Momchilov, A., Nassalevska, A. and Kozawa, A., J. Power Sources, 43–44, 551559 (1993).Google Scholar
18 Dahn, J.R., Fuller, E.W., Obrovac, M. and von, U. Sacken, Solid State Ionics, 69, 265270 (1994).Google Scholar
19 Xie, L., Ebner, W., Fouchard, D., Extended Abstracts, p. 162163, The Electrochemical Society Fall Meeting, Miami Beach, Florida, October 9-14, (1994).Google Scholar
20 Ozawa, K. and Yokokawa, M., The Tenth International Seminar on Primary and Secondary Battery Technology and Applications, March 1-4, 1993, Deerfield Beach, FL.Google Scholar
21 Cuellar, E., Newnham, C.E. and Scholey, N., The Twelfth Int. Seminar on Primary and Second Battery Technology and Applications, Deerfield Beach, Florida, USA, Mar. 6-9, (1995).Google Scholar
22 Fong, R., von Sacken, U., and Dahn, J.R., J. Electrochem. Soc., 137, 2009 (1990).Google Scholar
23 Dahn, J.R., Phys. Rev. B: Condens. Matter, 44, 9170 (1991).Google Scholar
24 Sato, K., Noguchi, M., A, Demachi, Oki, N. and Endo, M., Science, 264, 556 (1994).Google Scholar
25 Yata, S., Kinoshita, H., Komori, M., Ando, N., Kashiwamura, T., Harada, T., Tanaka, K. and Yamabe, T., Synthetic Metals, 62, 153 (1994).Google Scholar
26 Zheng, T., Liu, Y., Fuller, E.W., Tsng, S., von Sacken, U. and Dahn, J. R., submitted to J. Electrochem. Soc.Google Scholar
27 Fouchard, D., Xie, L., Ebner, W., Extended Abstracts, p. 178, The Electrochemical Society Fall Meeting, Miami Beach, Florida, October 9-14, (1994).Google Scholar
28 Fouchard, D. and Like Xie, unpublished results.Google Scholar
29 Ebner, W., Fouchard, D. and Like, Xie, Solid State lonics 69 (1994) 238256.Google Scholar