Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-29T07:39:35.578Z Has data issue: false hasContentIssue false

Material Properties of Semiconductor Strained-Layer Superlattices*

Published online by Cambridge University Press:  22 February 2011

G. C. Osbourn*
Affiliation:
Sandia National LaboratoriesAlbuquerque, New Mexico 87185
Get access

Abstract

High quality superlattices can be grown from semiconductor materials with lattice mismatches of several percent if the layers are kept sufficiently thin. The mismatch in these structures is accommodated by coherent layer strains, so that misfit defects are not generated at the superlattice interfaces. These strained-layer superlattices have unique structural, optical, and electrical properties due to both the large layer strains and the flexibility in the choice of lattice mismatched layer materials. Recent results which demonstrate the high crystalline quality of these mismatched heterostructures are reviewed. Further results are presented which illustrate some of the unique material properties of these structures, and potential applications associated with such properties are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1984

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was performed at Sandia National Laboratories supported by the U.S. Department of Energy under contract number DE-AC04–76DP00789.

References

REFERENCES

1. See, for example, Milnes, A. G. and Feucht, D. L., Heterojunctions and Metal-Semiconductor Junctions (Academic, New York, 1972).Google Scholar
2. Frank, F.C. and van der Merwe, J.H., Proc. R. Soc. London Ser. A 198, 216 (1949).Google Scholar
3. van der Merwe, J.H., J. Appl. Phys. 34, 117 (1963).Google Scholar
4. Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 27, 118 (1974);Google Scholar
Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 29, 273 (1975);Google Scholar
Matthews, J.W. and Blakeslee, A.E., J. Cryst. Growth 32, 265 (1976).Google Scholar
5. Osbourn, G.C., J. Appl. Phys. 53, 1586 (1982).Google Scholar
6. Osbourn, G.C., Biefeld, R.M. and Gourley, P.L., Appl. Phys. Lett. 41, 172 (1982).CrossRefGoogle Scholar
7. Osbourn, G.C., J. Vac. Sci. Technol. 21, 469 (1982).Google Scholar
8. Fritz, I.J., Biefeld, R.M. and Osbourn, G.C., Solid State Commun. 45, 323 (1983).CrossRefGoogle Scholar
9. Gourley, P.L., Biefeld, R.M., Osbourn, G.C. and Fritz, I.J., Proceedings of 1982 International Symposium on GaAs and Related Compounds (Inst. of Physcs, Berkshire, 1983), p. 248.Google Scholar
10. Fritz, I.J., Dawson, L.R., Osbourn, G.C., Gourley, P.L. and Biefeld, R.M., Proceedings of 1982 International Symposium on GaAs and Related Compounds (Institute of Physics, Berkshire, 1983), p. 241.Google Scholar
11. Fritz, I.J., Dawson, L.R. and Zipperian, T.E., J. Vac. Sci. Technol. B1, 387, (1983).Google Scholar
12. Ludowise, M.J., Dietze, W.T., Lewis, C.R., Holonyak, N., Hess, K., Camras, M.D. and Nixon, M.A., Appl. Phys. Lett. 42, 257 (1983).Google Scholar
13. Laidig, W.D., Lee, J.W., Chang, P.K., Simpson, L.W. and Bedair, S.M., Electronic Materials Conference University of Vermont, Burlington, VT 1983, Abstract E-3, p. 60.Google Scholar
14. Marzin, J.Y. and Rao, E.V.K., Appl. Phys. Lett. 43, 560 (1983).Google Scholar
15. Fritz, I.J., Dawson, L.R. and Zipperian, T.E., Appl. Phys. Lett. 43, 846 (1983).Google Scholar
16. Dingle, R., Störmer, H. L., Gossard, A.C. and Wiegmann, W., Appl. Phys. Lett. 33, 365 (1978).Google Scholar
17. Schirber, J.E., Fritz, I.J., Dawson, L.R. and Osbourn, G.C., Phys. Rev. B 28, 2229 (1983).Google Scholar
18. Biefeld, R.M., Zipperian, T.E., Gourley, P.L. and Osbourn, G.C., Electronic Materials Conference, University of Vermont, Burlington, VT, 6/22–24/83: The Metallurgical Society of AIME, Warrendale, PA, 1983 Abstract E-2, p. 60.Google Scholar
19. Dawson, L.R., Osbourn, G.C., Zipperian, T.E., Wiczer, J.J., Barnes, C.E., Fritz, I.J. and Biefeld, R.M., Molecular Beam Epitaxy Workshop, Georgia Institute of Technology, Atlanta, GA, 10/6–7/83: Abstract TA7.Google Scholar
20. Osbourn, G.C., J. Vac. Sci. Technol. B1, 379 (1983).Google Scholar
21. Picraux, S.T., Biefeld, R.M., Dawson, L.R., Osbourn, G.C., and Chu, W.K., J. Vac. Sci. Technol. B 1, 687 (1983).Google Scholar
22. Narusawa, T. and Gibson, W.M., Phys. Rev. Lett. 47, 1459 (1981).Google Scholar
23. Schaffer, W.J., Lind, M.D., Kowalczyk, S.P. and Grant, R.W., J. Vac. Sci. Technol. B1, (1983).Google Scholar
24. See, for example, Bir, G.L. and Pikus, G.E., Symmetry and Strain-Induced Effects in Semiconductors (John Wiley and Sons, New York, 1974).Google Scholar
25. Biefeld, R.M., Gourley, P.L., Fritz, I.J. and Osbourn, G.C., Appl. Phys. Lett. 43, 759 (1983).Google Scholar
26. Osbourn, G.C., Molecular Beam Epitaxy Workshop, Georgia Institute of Technology, Atlanta, GA, 10/6–7/83: Abstract TA6.Google Scholar
27. Ludowise, M. J., Dietze, W. T., Lewis, C. R., Camras, N. D., Holonyak, N., Fuller, B. K. and Nixon, M. A., Appl. Phys. Lett. 42, 487 (1983).Google Scholar
28. Myers, D. R., Zipperian, T. E., Biefeld, R. M. and Wiczer, J. J., Tech. Digest of 1983 International Electron Device Meeting (to be published).Google Scholar