No CrossRef data available.
Published online by Cambridge University Press: 31 January 2011
Current biomaterials as a scaffold for bone regeneration are limited by the extent of degradation concurrent with bone formation, mechanical strength, and the extent of osteogenic differentiation of marrow stromal cells migrating from the surrounding tissues. In this project, a novel laminated nanocomposite scaffold is fabricated, consisting of poly (L-lactide ethylene oxide fumarate) (PLEOF) hydrogel reinforced with poly (L-lactide acid) (PLLA) electrospun nanofibers and hydroxyapatite (HA) nanoparticles. The laminated nanocomposites were fabricated by dry-hand lay up technique followed by compression molding and thermal crosslinking. The laminated nanocomposites were evaluated with respect to mechanical strength and osteogenic differentiation of marrow stromal (BMS) cells. Laminates showed modulus values much higher than that of hydrogel or fiber. The effect of laminated nanocomposites on osteogenic differentiation of BMS cells was determined in terms of ALPase activity and calcium content. Our results demonstrate that grafting RGD peptide to a PLEOF/HA hydrogel reinforced with PLLA nanofibers synergistically enhances osteogenic differentiation of BMS cells.