Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-05T10:29:09.014Z Has data issue: false hasContentIssue false

Mapping of Donor Impurities in Gan By Raman Imaging

Published online by Cambridge University Press:  10 February 2011

F. A. Ponce
Affiliation:
Xerox Palo Alto Research Center, Palo Alto, CA 94304
J. W. Steeds
Affiliation:
University of Bristol, H. H. Wills Physics Laboratory, Bristol BS8 1TL, UK
C. D. Dyer
Affiliation:
Renishaw, Old Town, Wotton-under-Edge, Gloucestershire, GL12 7DH, UK
G. D. Pitt
Affiliation:
Renishaw, Old Town, Wotton-under-Edge, Gloucestershire, GL12 7DH, UK
Get access

Abstract

Raman scattering experiments on silicon-doped GaN show that donor impurities quench the Al(LO) Raman line at 735 cm−1. This is due to interaction between lattice vibrations and the free carrier plasma. The spatial variation of the Al(LO) signal has been imaged directly using newly developed instrumentation. Features with dimension under on micron are observed in faceted GaN crystallites. The variation in free carrier concentration is attributed to preferential incorporation of donor impurities during growth.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Argüello, C. A., Rousseau, D. L., and Porto, S. P. S., Phys. Rev. 181, 1351 (1969).Google Scholar
2. Siegle, H., Eckey, L., Hoffmann, A., Thomsen, C., Meyer, B. K., Schikora, B., Hankein, M., Lischka, K., Sol. State Comm. 96, 943 (1995).Google Scholar
3. Barker, A. S. Jr. and Ilegems, M., Phys. Rev. B 7, 743 (1973).Google Scholar
4. Klein, M. V., in “Light Scattering in Solids I”, editted by Cardona, M. (Springer Verlag, Berlin 1975), p. 147.Google Scholar
5. Rieger, W., Metzger, T., Angerer, H., Dimitrov, R., Ambacher, O., and Stutzmann, M., Appl. Phys. Lett. 68, 970(1996).Google Scholar
6. Kozawa, T., Kachi, T., Kano, H., Nagase, H., Koide, N., and Manabe, K., J. Appl. Phys. 77, 4389(1994).Google Scholar
7. Hayashi, K., Itoh, K., Sawaki, N., and Akasaki, I., Sol. State Comm. 77, 115 (1991).Google Scholar
8. Ruppin, R. and Nahum, J., J. Phys. Chem. Solids 35, 1311 (1974).Google Scholar
9. Olego, D. and Cardona, M., Phys. Rev. B 24, 7217 (1981).Google Scholar
10. Shen, H., Pollak, F. H., and Sacks, R. N., Appl. Phys. Lett. 47, 891 (1985).Google Scholar
11. Kraus, J. and Hommel, D., Semicond. Sci. Technol. 10, 785 (1995).Google Scholar
12. Kozawa, T., Kachi, T., Kano, H., Taga, Y., Hashimoto, M., Koide, N., and Manabe, K., J. Appl. Phys. 75, 1098(1994).Google Scholar
13. Hayward, I. P., Baldwin, K. J., Hunter, D. M., Batchelder, D. N. and Pitt, G. D., Diamond and Rel.Mat. 4, 617 (1995).Google Scholar
14. Burton, N. C., Steeds, J. W., Meader, G. M., Shreter, Y. G., and Butler, J. E., Diamond and Rel. Mat. 4, 1222 (1995).Google Scholar
15. Ponce, F. A., Steeds, J. W., Dyer, C. D., and Pitt, G. D., Appl. Phys. Lett. 69, 2650 (1996).Google Scholar
16. Ponce, F. A., Major, J. S. Jr., Piano, W. E., and Welch, D. F., Appl. Phys. Lett., 65, 2303 (1994).Google Scholar
17. Ponce, F. A., Bour, D. P., Götz, W., and Wright, P. J., Appl. Phys. Lett. 68, 57 (1996).Google Scholar
18. Ponce, F. A., Bour, D. P., Götz, W., Johnson, N. M., Helava, H. I., Grzegory, I., Jun, J., and Porowski, S., Appl. Phys. Lett. 68, 917 (1996).Google Scholar
19. Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
20. Rouviere, J.-L., Arlery, M., Bourret, A., Niebuhr, R., and Bachem, K.-H., Mat. Res. Soc. Proc. 395, 393 (1996).Google Scholar