Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T04:13:50.918Z Has data issue: false hasContentIssue false

Manganese Dioxides: Chemical-Structural Disorder, Electronic Properties, Electrochemical Activity and Proton Diffusivity

Published online by Cambridge University Press:  10 February 2011

C.J. Poinsignon*
Affiliation:
Laboratoire d'Electrochimie et de Physicochimie des Matériaux et des Interfaces, UMR 5631 ENSEEG, B.P.75 F-38402 Saint Martin d'Hères Cédex, FRANCE. [email protected]
Get access

Abstract

Several synthetic and natural manganese dioxides (MD) are characterized in terms of chemical composition, structural disorder and electrochemical activity; semi conducting properties are examined on pressed powdered samples. The reactivity scale established between structural disorder and electrochemical reactivity is paralleled by semi conducting properties and proton diffusivity. Conductivity values of 0.15 S.cm−1for stoechiometric β-MnO2, 1.3 10−2, 2.5 10−2 and 3.7 10−2 S.cm−1 for the defect dioxides, respectively Synthetic-Ramsdellite, CMD and EMD are measured. Proton diffusivity study by EIS provides, for low reduction rate, diffusion coefficient D values varying from 10–15 cm2/s value to 10−16 for the best reactive forms EMD and CMD; for NMD and β-MD, D is respectively 10−16 and 10−21 cm2/s. Redox reversibility is obtained around 1.3V (vs Hg.HgO) for EMD for a one electron reduction in [KOH] <IM; at -0.4V for a 2 electrons reduction in 9M KOH for Bi modified NMD.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ruetschi, P.. J. Electrochem. Soc. p 2737 (1984).Google Scholar
2. McLean, L., Poinsignon, C., Amarilla, J.M., Lecras, F., Strobel, P.. J. Mater.Chem. 8, 1183 (1995)Google Scholar
3. Ripert, M., Poinsignon, C., Pannetier, J., Chabre, Y., Mat. Res. Soc.Proc., 210, 359 (1991).Google Scholar
4. Poinsignon, C., Amarilla, J.M., Tedjar, F., J. Material Chemistry, 3 (12) 1227, (1993).Google Scholar
5. Amarilla, J.M., Tedjar, F., Poinsignon, C., Electrochem. Acta, 39, 2321 (1994).Google Scholar
6. Poinsignon, C., Amarilla, M., Tedjar, F., 1993. Battery &Batt. Materials 13, 148 (1994).Google Scholar
7. Poinsignon, C., MacLean, L., Amarilla, J.M., LeCras, F., Strobel, P., MRS Symp.Proceed. 369, 87 (1995).Google Scholar
8. Poinsignon, C., Tedjar, F., Amarilla, J. M.. Batteries and Battery materials 16, 110 (1997).Google Scholar
9. Gorgulho, H.F., Pernaut, J.M., Fernandes, R.Z.D. M R.S. Symp. Proc. Microporous and Macroporous Materials, 431, 63 (1996).Google Scholar
10. Amarilla, J.M., Poinsignon, C. J.Power Source (1999).Google Scholar
11. Grincourt, Y., Henault, M., Duclot, M., Souquet, J.- L., Phys. Chem. Glasses 37 (6) 236 (1996)Google Scholar
12. Gorgulho, H.F., Poinsignon, C., Ginoux, J.- L., Chem. Materials (1999) submitted.Google Scholar
13. a) Pannetier, J., Progr. in batteries and battery materials, 11, p 51(1992). b)Y. Chabre and J. Pannetier, Prog. Solid St. Chem. 23, p1-130 (1995).Google Scholar
14. Wolff, P.M. De, Acta Crystallogr. 12, p 341345 (1959).Google Scholar
15. Gorgulho, H.F., Poinsignon, C., Gorrec, B. Le, Diard, J.- P., Ginoux, J.- L., J. Electrochem.Soc. (1999) to appear.Google Scholar
16. Kosawa, A., Yeager, J.F., J. Electro Chem. Soc., 115, p 1003 (1968).Google Scholar
17. Gautier-Luneau, I., Dalphrase, N., Chabre, Y., Poinsignon, C., SSPC-V meeting Assisi (Italy) (1990).Google Scholar
18. Gabano, J.P., Morignat, B., Laurent, J.F., Electrochem. Tech. 5, 531(1967).Google Scholar
19. Gorgulho, H.F., Poinsignon, C., Fernandes, R.Z.D. J. Power Source (1999) to appear.Google Scholar