Hostname: page-component-78c5997874-s2hrs Total loading time: 0 Render date: 2024-11-09T01:15:41.572Z Has data issue: false hasContentIssue false

Making PEG-based Microparticles for Applications in Biology and Medicine

Published online by Cambridge University Press:  01 February 2011

Tom Oliver McDonald
Affiliation:
[email protected], University of Manchester, School of Materials, Materials Science Centre, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Søren Christensen
Affiliation:
[email protected], VersaMatrix A/S, VersaMatrix A/S, Gamle Carlsberg Vej 10, DK-2500 Valby, Copenhagen, N/A, Denmark
Rein V Ulijn
Affiliation:
[email protected], University of Manchester, School of Materials, Materials Science Centre, Grosvenor Street, Manchester, M1 7HS, United Kingdom
Get access

Abstract

We demonstrate the polymerisation of PEGA hydrogel microparticles with a mean diameter of 16 µm (similar to that of biological cells), and we show that these particles are compatible with enzymes. Furthermore, we demonstrate that enzyme catalysed reactions occur faster with these microparticles than with commercially available macrobeads which are typically 200-400 µm in diameter.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Renil, M. and Meldal, M. Tetrahedron letters. Vol. 36, No. 26, 46474650, (1995).Google Scholar
2. Basso, A., Martin, L. D., Gardossi, L., Margetts, G., Brazendale, I., Bosma, A. Y., Ulijn, R. V. and Flitsch, S. L.. Chem Comm. 1296–1297 (2003)Google Scholar
3. Kress, J., Zanaletti, R., Amour, A., Ladlow, M., Frey, J. G. and Bradley, M., Chem. Eur. J,. 8, No. 16, (2002).Google Scholar
4. Doezé, R., Maltman, B. A., Egan, C. L., Ulijn, R. V. and Flitsch, S. L., Angew. Chem. Int. Ed, 43, 31383141, (2004).Google Scholar
5. Thornton, P., McConnell, G. and Ulijn, R. V., Chem Commun, 5913–5195, (2005).Google Scholar
6. Basso, A., Martin, L. D., Gardossi, L., Margetts, G., Brazendale, I., Bosma, A.Y., Ulijn, R. V. and Flitsch, S. L., Chem Commun, 12961297, (2003).Google Scholar
7. Leon, S., Quarrell, R. and Lowe, G., Bioorganic & Medicinal Chemistry Letters, 8, 299730027, (1998).Google Scholar
8. Thornton, P. D., Ulijn, R. V., Enzyme-Triggered Collapse of PEG-based particles, Materials Research Society Proceedings, 2006, 945E, 0947–A02.Google Scholar
9. Thornton, P. D., Mart, R. J., Ulijn, R. V., Enzyme-Responsive Polymer Hydrogel Particles for Controlled Release, Adv. Mater., (2007) (in press).Google Scholar
10. LaVan, D. A., McGuire, T., Langer, R., Nature Biotechnology, 21, 10, 1185, (2002).Google Scholar
11. Hamielec, A. E., Tobita, H., Polymerization Processes. Ullmann's Encyclopedia of Industrial Chemistry, VCH Publishers, Inc. Google Scholar
12. Renil, M., Ferreras, M., Delaisse, J. M., Foged, N. T., Meldal, M., J. Peptide Sci., 4, 195210, (1998).Google Scholar
13. Farrer, R. A., Copeland, G. T., Previte, M. J. R., Okamoto, M. M., Miller, S. J. and Fourkas, J. T., J. AM. Chem. Soc, 124, 19942003, (2002).Google Scholar
14. Feder, J., Biochemistry 6, 7, 20882093, (1969).Google Scholar
15. Zourob, M., Gough, J. E., Ulijn, R. V., Adv. Mater., 18, 655659 (2006).Google Scholar