Hostname: page-component-78c5997874-mlc7c Total loading time: 0 Render date: 2024-11-19T16:44:07.015Z Has data issue: false hasContentIssue false

Magnetoresistance in Thin Films of Silver Chalcogenides

Published online by Cambridge University Press:  10 February 2011

I.S. Chuprakov
Affiliation:
Chemistry Department and MARTECH, Florida State University, Tallahassee, FL 32306
V.B. Lyalikov
Affiliation:
Chemistry Department and MARTECH, Florida State University, Tallahassee, FL 32306
K.-H. Dahmen
Affiliation:
Chemistry Department and MARTECH, Florida State University, Tallahassee, FL 32306
P. Xiong
Affiliation:
Physics Department and MARTECH, Florida State University, Tallahassee, FL 32306
Get access

Abstract

Oriented and non-oriented thin films of silver(I) telluride, Ag2Te, were prepared by e-beam evaporation, vapor transport technique and Chemical Vapor Deposition (CVD). Crystallinity and orientation of the films were studied by Θ−2Θ XRD, rocking curve and pole figure measurements. The origin and conditions for the oriented growth are discussed. Special microdevice was prepared by photolitography from the oriented films of Ag2Te in order to investigate magnetoresistance (MR) in this material. It was proved that the reported earlier negative MR in Ag2Te films is a completely geometrical effect, which can be observed using non-linear arrangement of current and voltage contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Heremans, J., J. Phys. D-Appl. Phys. 26, p. 1149 (1993).Google Scholar
2. Helmolt, R. von, Wecker, J., Holzapfel, B., Schultz, L., and Samwer, K., Phys. Rev. Lett. 71, p. 2331 (1993).Google Scholar
3. Jin, S., Tiefel, T. H., McCormack, M., Fastnacht, R. A., Ramesh, R., and Chen, L. H., Science 264, p. 413 (1994).Google Scholar
4. Baibich, M. N., Broto, J. M., Fert, A., Vandau, F. N., Petroff, F., Eitenne, P., Creuzet, G., Friederich, A., and Chazelas, J., Phys. Rev. Lett. 61, p. 2472 (1988).Google Scholar
5. Berkowitz, A. E., Mitchell, J. R., Carey, M. J., Young, A. P., Zhang, S., Spada, F. E., Parker, F. T., Hutten, A., and Thomas, G., Phys. Rev. Lett. 68, p. 3745 (1992).Google Scholar
6. Xiao, J. Q., Jiang, J. S., and Chien, C. L., Phys. Rev. Lett. 68, p. 3749 (1992).Google Scholar
7. Kikuchi, H., Iyetomi, H., and Hasegawa, A., J. Phys.-Condes. Matter 9, p. 6031 (1997).Google Scholar
8. Xu, R., Husmann, A., Rosenbaum, T. F., Saboungi, M. L., Enderby, J. E., and Littlewood, P. B., Nature 390, p. 57 (1997).Google Scholar
9. Chuprakov, I. S., and Dahmen, K. H., Appl. Phys. Lett. 72, p. 2165 (1998).Google Scholar
10. Abrikosov, A. A., Phys. Rev. B-Condens Matter 58, p. 2788 (1998).Google Scholar
11. Gupta, A., Gong, G. Q., Xiao, G., Duncombe, P. R., Lecoeur, P., Trouilloud, P., Wang, Y. Y., Dravid, V. P., and Sun, J. Z., Phys. Rev. B-Condens Matter 54, p. 15629 (1996).Google Scholar
12. Hwang, H. Y., Cheong, S. W., Ong, N. P., and Batlogg, B., Phys. Rev. Lett. 77, p. 2041 (1996).Google Scholar
13. Shreekala, R., Rajeswari, M., Ghosh, K., Goyal, A., Gu, J. Y., Kwon, C., Trajanovic, Z., Boettcher, T., Greene, R. L., Ramesh, R., and Venkatesan, T., Appl. Phys. Lett. 71, p. 282 (1997).Google Scholar
14. Chuprakov, I. S., and Dahmen, K. H., J. Phys. IV 9, p. 313 (1999).Google Scholar
15. JCPDS database, files a) 34-142; b) 6-575.Google Scholar
16. Safran, G., Malicsko, L., and Radnoczi, G., J. Cryst. Growth 205, p. 153 (1999).Google Scholar
17. Chuprakov, I.S., Dahmen, K. H., and Xiong, P., submitted to Appl. Phys. Lett.Google Scholar