Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T16:40:29.688Z Has data issue: false hasContentIssue false

Magnetography: A novel Characterization Tool for Li-Ion-Batteries

Published online by Cambridge University Press:  06 June 2013

Timm Bergholz
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Leo-Brandt Straße 1, 52425 Jülich, Germany
Theodor Nuñez
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Leo-Brandt Straße 1, 52425 Jülich, Germany
Jürgen Wackerl
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Leo-Brandt Straße 1, 52425 Jülich, Germany
Carsten Korte
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Leo-Brandt Straße 1, 52425 Jülich, Germany
Detlef Stolten
Affiliation:
Forschungszentrum Jülich GmbH, Institute of Energy and Climate Research, Electrochemical Process Engineering (IEK-3), Leo-Brandt Straße 1, 52425 Jülich, Germany
Get access

Abstract

The application of magnetography as a novel method to determine the state of charge (SoC) of commercial Li-ion Batteries is reported. The method is non-invasive and nondestructive and suitable to be applied during normal operation. It is based on spatially resolved measurement of the magnetic field B, induced by the changing current flow during cycling. A standardized measurement setup and procedure for conventional AMR-sensors has been developed, offering high reproducibility (∼0.1%) and the chance to characterize the different spatial components of the magnetic field (Bx, By, Bz). The percentage deviation of the B-distributions for different SoCs for a given current load reveals significant differences. A change of B of up to 20% between SoCs of 90% and 10% is found. The influence of current density at different SoC reveals a constant magnetic susceptibility χ at low SoC and a field dependent χ at high SoC. Both effects are attributed to the change of the magnetic properties upon varying the amount of intercalated lithium in the transition metal (LixNi1/3Co1/3Mn1/3O2) based intercalation cathode. The method can be used to provide an additional parameter for SoCestimation to battery management systems.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Marom, R.; Amalraj, S. F.; Leifer, N., et al. ., J. Mat. Chem. 2011, 21(27), 99389954.CrossRefGoogle Scholar
Novak, P., Carb. Electrochem. En. Stor. Conv. Sys., 2010; Vol. 263.Google Scholar
Vetter, J.; Novák, P.; Wagner, M. R., et al. ., J. Pow. Sourc. 2005, 147(1-2), 269281.CrossRefGoogle Scholar
(a) Zhang, J.; Lee, J., J. Pow. Sourc. 2011, 196(15), 60076014; (b) L. Lu; X. Han; J. Li, et al., J. Pow. Sourc. 2013, 226(0), 272–288.CrossRefGoogle Scholar
Piller, S.; Perrin, M.; Jossen, A., J. Pow. Sourc. 2001, 96(1), 113120.CrossRefGoogle Scholar
(a) Sasaki, T.; Godbole, V., et al. ., Electr. Mat. 2011; (b) A. Same; V. Battaglia; H.-Y. Tang, et al., J. Appl. Electrochem. 2012, 42(1), 1–9; (d) J. H. Lee; S. Ahn, J. Pow. Sourc. 2003, 119-121, 833–837; (e) U. S. Kim; C. B. Shin; C.-S. Kim, J. Pow. Sourc. 2008, 180(2), 909–916; (f) P. Novák; J. C. Panitz; F. Joho, et al., J. Pow. Sourc. 2000, 90(1), 52–58.Google Scholar
Hauer, K.-H.; Potthast, R.; Wüster, T., et al. ., J. Pow. Sourc. 2005, 143(1-2), 6774.CrossRefGoogle Scholar
Khare, N.; Singh, P.; Vassiliou, J. K., J. Pow. Sourc. 2012, 218(0), 462473.CrossRefGoogle Scholar
Hill, I. R.; Andrukaitis, E. E., J. Pow. Sourc. 2006, 162(2), 870877.CrossRefGoogle Scholar
Tinnemeyer, J. A., Proc. Power Sources Conf. 2010, 44th , 508511.Google Scholar
Bergholz, T.; Wackerl, J.; Korte, C., et al. ., Patent, August, 2012.Google Scholar
Mark W, V., J. Electrostat. 1995, 34(1), 6185.Google Scholar
Chernova, N. A.; Nolis, G. M.; Omenya, F. O., et al. ., J. Mat. Chem. 2011, 21(27), 98659875.CrossRefGoogle Scholar
Hertz, J. T.; Huang, Q.; McQueen, T., et al. ., Prepr. Arch., Condens. Matter 2007.Google Scholar
Liu, J.; Kunz, M.; Chen, K., et al. ., J. Phys. Chem. Lett. 2010, 1(14), 21202123 CrossRefGoogle Scholar
Kellerman, D. G.; Karelina, V. V.; Gorshkov, V. S., et al. ., Chem. Sust. Dev. 2002, 10(2), 721726.Google Scholar