Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-19T07:19:16.235Z Has data issue: false hasContentIssue false

Magnetocaloric Properties of Rapidly Solidified Ni51.1Mn31.2In17.7 Heusler Alloy Ribbons

Published online by Cambridge University Press:  31 January 2011

Jose Sánchez Llamazares
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Oviedo, Spain
Blanca Hernando
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Oviedo, Spain
Víctor Prida
Affiliation:
[email protected], Universidad de Oviedo, Fisica, Oviedo, Spain
Carlos García
Affiliation:
[email protected], MIT, Department of Materials Science and Engineering, Cambrige, Massachusetts, United States
Caroline Ross
Affiliation:
[email protected], United States
Get access

Abstract

Magnetic entropy change and refrigerant capacity have been determined for a field change of 20 kOe around the second-order magnetic transition of austenite in as-quenched Ni51.1Mn31.2In17.7 alloy ribbons produced by melt spinning technique. Samples crystallize in a single-phase austenite with the highly ordered L21-type crystal structure and a Curie temperature of 275 K. The material shows a maximum magnetic entropy change of ΔSMmax= - 1.7 Jkg-1K-1, an useful working temperature range of 78 K (δTFWHM) and a refrigerant capacity of RC=132 Jkg-1 (RC= │ΔSMmax│ x δTFWHM). The considerable RC value obtained together with the fabrication via a single-step process make austenitic Ni-Mn-In ribbons of potential interest as magnetic refrigerants for room temperature magnetic refrigeration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Geschneidner, K. A. Jr , Pecharsky, K., and Tsokol, A. O., Rep. Prog. Phys. 68, 1479 (2005)Google Scholar
2 Brück, E., J. Phys. D: Appl. Phys. 38, R381 (2005).Google Scholar
3 Krenke, T., Duman, E., Acet, M., Wassermann, E. F., Moya, X., Mañosa, L. and Planes, A. Nature Mater. 4, 450 (2005).Google Scholar
4 Han, Z. D., Wang, D. H., Zhang, C. L., Tang, S. L., Gu, B. X. and Du, Y. W. Appl. Phys. Lett. 89, 182507 (2006).Google Scholar
5 Pathak, A. K., Khan, M., Dubenko, I., Stadler, S. and Ali, N., Appl. Phys. Lett. 90, 262504 (2007)Google Scholar
6 Bhobe, P. A., Priolkar, K. R. and Nigam, A. K., Appl. Phys. Lett. 91, 242503 (2007).Google Scholar
7 Sharma, V. K., Chattopadhyay, M. K. and Roy, S. B. J. Phys. D: Appl. Phys. 40, 1869 (2007).Google Scholar
8 Tishin, A. M. and Spichkin, Y. I. The Magnetocaloric Effect and its Applications (Bristol: Institute of Physics Publishing, 2003)Google Scholar
9 Gschneidner, K. A. Jr , Pecharsky, V. K., Pecharsky, A. O. and Zimm, C. B., Mater. Sci. Forum 315-317, 69 (1999),Google Scholar
10 Sutou, Y., Imano, Y., Koeda, N., Omori, T., Kainuma, R., Ishida, K., and Oikawa, K., Appl. Phys. Lett. 85, 4358 (2004).Google Scholar
11 Krenke, T., Acet, M., Wassermann, E. F., Moya, X., Mañosa, L., and Planes, A., Phys. Rev. B 73, 174413 (2006).Google Scholar
12 Umetsu, R.Y., Kusakari, Y., Kanomata, T., Suga, K., Sawai, Y., Kindo, K., Oikawa, K., Kainuma, R., and Ishida, K., J. Phys. D: Appl. Phys. 42, 075003 (2009).Google Scholar
13 Han, Z. D., Wang, D. H., Zhang, C. L., Xuan, H. C., Zhang, J. R., Gu, B. X. and Du, Y. W. Solid State Commun. 146, 124 (2008).Google Scholar
14 Sánchez-Llamazares, J. L., Sanchez, T., Santos, J. D., Perez, M. J., Sanchez, M. L., Hernando, B., Escoda, Ll., Suñol, J. J., and Varga, R., Appl. Phys. Lett. 92, 012513 (2008).Google Scholar
15 Sánchez-Llamazares, J. L., Hernando, B., García, C., González, J., Escoda, Ll., Suñol, J. J., J. Phys. D: Appl. Phys. 42, 045002 (2009).Google Scholar