Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:41:42.585Z Has data issue: false hasContentIssue false

Magnetism in Cylindrical NiFe Nanotubes

Published online by Cambridge University Press:  01 February 2011

hwifen liew
Affiliation:
[email protected], Nanyang technological University, Singapore, Singapore
Sarjoosing Goolaup
Affiliation:
[email protected], Nanyang technological University, Singapore, Singapore
Xinghua Wang
Affiliation:
[email protected], Nanyang technological University, Singapore, Singapore
Wensiang Lew
Affiliation:
[email protected], Nanyang technological University, Singapore, Singapore
Get access

Abstract

We report the fabrication of ferromagnetic NiFe nanotubes with a wall thickness of 80 nm by electrodeposition in nanoporous templates. The structure and wall thickness of the nanotubes are controlled by the thickness of the conductive layer at the back of the templates. The NiFe nanotubes have shown soft magnetic material properties with high magnetic saturation and low coercivity. The NiFe nanotube arrays are preferentially magnetized in the perpendicular direction to the nanotubes. Micromagnetic simulation results show that a curling mode is perceived with the formation of opposite magnetic vortex states on the end of the nanotube surface during the magnetization process.

Type
Research Article
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Li, F. Metzger, R. M. and Doyle, W. D. IEEE Trans. Magn. 33, 3715 (1997)Google Scholar
[2] Krebs, J. J. M Rubinstein, Lubitz, P. Harford, M. Z. Baral, S. Shashidhar, R. Ho, Y. S. Chow, G. M. and Qardri, S. J. Appl. Phys. 70, 6404 (1991)Google Scholar
[3] Davis, D. M. Moldovan, M. Young, D. P. Henk, M. Xie, X. and Podlaha, E. J. Electrochem. Solid State Lett. 9, C153 (2006)Google Scholar
[4] Berry, C. C. and Curtis, A.S.G., J.Phys. D: Appl. Phys. 36, R198 (2003)Google Scholar
[5] Son, S. J. Reichel, J. He, B. Schuchman, M. and Lee, S. B. J. Am. Chem. Soc. 127, 7316 (2005)Google Scholar
[6] Nielsch, K. Castano, F. J. Ross, C. A. and Krishnan, R. J. Appl. Phys. 98, 034318 (2005)Google Scholar
[7] Li, D. Thmpson, R. S. Bergmann, G. and G, J. Lu, Adv. Mater. 20, 4574 (2008)Google Scholar
[8] Han, X.F. Shamaila, S. Sharif, R. Chen, J. Y. Liu, H. R. and Liu, D. P. Adv. Mater. 21, 1 (2009)Google Scholar
[9] Sellmyer, D. J. Zheng, M. and Skomski, R. J. Phys: Condes. Matter 13, R433 (2001)Google Scholar
[10] Zhan, Q. F. Chen, Z. Y. Xue, D. S. and Li, F. S. Phys. Rev. B66, 134436 (2002)Google Scholar
[11] Wang, Z.K., Lim, H.S. Liu, H.Y. Liu, S.C. Ng, S.C. and Kuok, M.H. Phys. Rev. Lett. 94, 137208 (2005)Google Scholar
[12] Lee, J. Suess, D. Schrefl, T. Oh, K.H. and Fidler, J. J. Magn. Magn. Mater. 310, 2445 (2007)Google Scholar
[13] Chen, A. P. Usov, N. A. Blanco, J. M. Gonzalez, J. J. Magn. Magn. Mater. 316, e317 (2007)Google Scholar
[14] Landeros, P. Suarez, O. J. Cuchillo, A. and Vargas, P. Phys. Rev. B79, 024404 (2009)Google Scholar
[15] Landeros, P. Allende, S. Escrig, J. Salcedo, E. and Altbir, D. Appl. Phys. Lett. 90, 102501 (2007)Google Scholar
[16] Escrig, J. Bachmann, J. Jing, J. Daub, M. Altbir, D. and Nielsch, K. Phys. Rev. B77, 214421 (2008)Google Scholar