Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T09:20:08.136Z Has data issue: false hasContentIssue false

Magnetism, Electronic Properties and Structure at High Density State of Magnetic Solids

Published online by Cambridge University Press:  10 February 2011

A. G. Gavrejuk
Affiliation:
Institute for High Pressure Physics RAS, Troitsk, Moscow reg., 142092, Russia, E-mail: [email protected]
G. N. Stepanov
Affiliation:
Institute for High Pressure Physics RAS, Troitsk, Moscow reg., 142092, Russia, E-mail: [email protected]
L. A. Trojan
Affiliation:
Institute for High Pressure Physics RAS, Troitsk, Moscow reg., 142092, Russia, E-mail: [email protected]
V. A. Sidorov
Affiliation:
Institute for High Pressure Physics RAS, Troitsk, Moscow reg., 142092, Russia, E-mail: [email protected]
I. S. Lyubutin
Affiliation:
Institute of Crystalography RAS, Leninsky pr. 59, Moscow 117333, Russia
B. Palosz
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, 01 -142 Warsaw, Sokolowska 29.
S. Steumakh
Affiliation:
High Pressure Research Center, Polish Academy of Sciences, 01 -142 Warsaw, Sokolowska 29.
M. Winzenick
Affiliation:
Univesitaet-G-H Paderborn, Fachbereich 6 Physik, Warburgerstr. 100, 33098 Paderborn, Germany
Get access

Abstract

We develop and apply high pressure techniques to study the modification of electronic structure, magnetic properties, and local crystal structure, in magnetic materials under high pressure. The variation in inter-atomic distances and atomic volumes in the high pressure regime provides new information for elucidating electronic processes in solids, and for understanding the connection between electronic structure and magnetic properties of matter.

For our samples we used rare-earth orthoferrites, which are of the perovskite-type structure, and Heusler alloys, with the cubic structure. Those materials are known to be magnetic insulators and magnetic metals, respectively.

We studied the following properties induced by high pressure: electronic structure, spin crossover effects, magnetic to non-magnetic transitions, and insulator-to-metal transitions. The problems of delocalization, distribution of spin, and charge density distribution in dielectric materials, semiconductors, and metals, as well as chemical bonding can be investigated in this way.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jayaraman, I. A., Rev. Mod. Phys. 55, 65(1983).Google Scholar
2. Tsiok, O.B., Bredikhin, V.V., Sidorov, V.V., Khvostantsev, L.G., High Pres. Res. 10, 523(1992).Google Scholar
3. Sidorov, V.A., Khvostantsev, L.G., Jourl of Mag. and Mag. Mat. 129, 356(1992).Google Scholar
4. Khvostantsev, L. G., et. al., High Temp.- High Pressures, 9 (1977) 637.Google Scholar
5. Eibschütz, M. et al., J. Appl. Phys., 35 (1964) 1071.Google Scholar
6. Khvostantsev, L. G., and Sidorov, V.A., Phys. St. Sol.(a), 82 (1984) 389.Google Scholar
7. Marezio, M., Remeika, J.P., Dernier, P.D., Acta Cryst. B: 26, 2008 (1970)Google Scholar
8. Lyubutin, I.S., Vishnyakov, Yu.S., JETP 61, 1962(1971).Google Scholar
9. Litster, J.D., Benedek, C.B., J. Appl. Phys. 37, 1320 (1966).Google Scholar
10. Geschwind, S., Locher, P.P., Phys. Rev. 139, A991 (1965).Google Scholar
11. Halasa, N.A., De Pasquali, G. and Drickamer, H.G., Phys. Rev. B: 10, 154 (1974).Google Scholar
12. Nikolaev, I.N., Potapov, V.P., Lyubutin, I.S., Fiz. Tverd. Tela (USSR) 20, 3585(1978).Google Scholar
13. Samoilov, B. N., Sklyarevsky, V. V., Stepanov, E. P., JETP 36, 1366(1959).Google Scholar
14. Huang, L., Orbach, R., Simanek, E., Owen, J. and Taylor, D.R., Phys. Rev. 156, 383(1967).Google Scholar
15. Van der Woude, F. and Sawatzky, G. A., Phys. Rev. B 4, 3159(1971).Google Scholar
16. van der Woude, Bokema F., Sawatzky, G. A., Int. J. Magnetism, 3, 341 (1972).Google Scholar
17. Moskvin, A.S., Ovanecyan, N.S., Trukhtanov, V.A., Hyp. Interactions 3, 429(1977).Google Scholar
18. Moskvin, A.S., Ovanecyan, N.S., Trukhtanov, V.A., Hyp. Interactions 1, 265 (1975).Google Scholar
19. Lyubutin, I.S., The method of the diamagnetic nuclei probe in the magnetic properties of the crystals study, in “Physical crystallography”, Moscow - NAUKA, 1992.Google Scholar
20. Miyahara, Y., Iida, S., J. Phys. Soc. Jap. 37, 1248(1974).Google Scholar
21. Hearne, G. R., Pasternak, M. P., Taylor, R. D., and Lacorre, P., Phys. Rev. B 51, 11495 (1995).Google Scholar
22. Geldart, D.J.W., Campbell, C.C.M., Pothier, P.J., Leiper, W., Canad. J. Phys. 50, 206 (1971).Google Scholar
23. Leiper, W., Geldart, D.J., Pothier, P.J., Phys. Rev. B. 3(5), 1837 (1971).Google Scholar
24. Delyagin, N.N., Krylov, V.I., Nesterov, V.I., JETP 79 (8), 1050 (1980).Google Scholar
25. Stepanov, G.N., Gavriliuk, A.G., Tsiok, O.B. and Irkaev, S.M., “High Pressure Science and Technology” (World Scientific Publisshing), 742 (1996).Google Scholar
26. Bozorth, Richard M., in Ferromagnetism, D. Van Nostrand Company, Toronto- New York -London, 1951.Google Scholar
27. Nikolayev, I.N., Potapov, V.P., Marin, V.P., JETP 67(9), 1190 (1974).Google Scholar
28. Kaneko, T., Yoshida, H., Abe, S., Kamigaki, K., J. Appl. Phys. 52(3), 2046 (1981).Google Scholar
29. Shinohara, T., J. Phys. Soc. Japan 28, 313 (1970).Google Scholar