Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-25T15:49:03.896Z Has data issue: false hasContentIssue false

Magnetic Sol-Gel Derived Poly(oxyethylene)- Siloxane Nanohybrids

Published online by Cambridge University Press:  01 February 2011

V.S. Amaral
Affiliation:
Departamento de Física and CICECO, Universidade de Aveiro, Aveiro, PORTUGAL
L.D. Carlos
Affiliation:
Departamento de Física and CICECO, Universidade de Aveiro, Aveiro, PORTUGAL
N.J.O. Silva
Affiliation:
Departamento de Física and CICECO, Universidade de Aveiro, Aveiro, PORTUGAL
V. de Zea Bermudez
Affiliation:
Departamento de Química, Univ. de Trás-os Montes e Alto Douro Vila Real, PORTUGAL
K. Dahmouche
Affiliation:
Instituto de Química/UNESP, Araraquara-SP, BRAZIL
C.V. Santilli
Affiliation:
Instituto de Química/UNESP, Araraquara-SP, BRAZIL
A.F. Craievich
Affiliation:
Instituto de Física/USP, Sao Paulo-SP, BRAZIL
F. Palacio
Affiliation:
Instituto de Ciencia de Materiales de Aragón, CSIC - Univ. de Zaragoza, Zaragoza, SPAIN.
Get access

Abstract

The magnetic and structural properties of sol-gel derived organic/inorganic nanocomposites doped with Fe(II), Fe(III), Nd(III) and Eu (III) ions are discussed. These hybrids consist of poly(oxyethylene)-based chains grafted onto siloxane nanodomains by urea cross-linkages. Small angle X-ray scattering data show the presence of spatial correlations of siloxane domains embedded in the polymer matrix. The magnetic properties of rare-earth doped samples are determined by single ion crystal-field-splitted levels (Eu3+ J=0; Nd3+ J=9/2) and the small thermal irreversibility is mainly associated to structural effects. Fe2+-doped samples behave as simple paramagnet with residual antiferromagnetic interactions. Fe3+-doped hybrids are much more complex, with magnetic hysterisis, exchange anisotropy and thermal irreversibility at low temperatures. Néel temperatures increase up to 14K for the highest (∼5.5%) Fe3+ mass concentration.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Sanchez, C. Ribot, F. and Lebeau, B. J. Mater. Chem. 9, 3544 (1999).Google Scholar
2. a) Carlos, L.D. Messaddeq, Y. Brito, H. F. Ferreira, R. A. Sá, Bermudez, V. de Zea, Ribeiro, S. J. L., Adv. Mater. 12, 594 (2000) b) L.D Carlos, R.A Sá Ferreira, V. de Zea Bermudez, C. Molina, L.A Bueno, S.J.L Ribeiro, Phys.Rev.B 60, 10042 (1999).Google Scholar
3. a) Dahmouche, K. Santilli, C. V. Pulcinelli, S. H. and Craievich, A. F. J. Phys. Chem. B, 103, 4937 (1999) b) K Dahmouche, L.D. Carlos, V. de Zea Bermudez, R. A. Sá Ferreira, C. V Santilli, A. F Craievich, J. Mater. Chem. 11, 3249 (2001).Google Scholar
4. Beaucage, G. Ulibarri, T. A. Black, E. P. and Schaefer, D. W. in Hybrid Organic-Inorganic Composites, ed. Mark, J. E. Lee, C. Y.-C. and Bianconi, P. A. Am. Chem. Soc. Symp. Proc., ACS, Washington, 585, 97 (1995).Google Scholar
5. Vleck, J.H. Van, Theory of Electric and Magnetic Susceptibilities, Oxford University Press (1932).Google Scholar
6. Amaral, V. S. Carlos, L. D. Bermudez, V. De Zea, IEEE Transactions on Magnetics, 37, 2935 (2001).Google Scholar
7. Barbara, B., Gignoux, D., Vettier, C., Lectures on Modern Magnetism, Springer-Verlag (1988).Google Scholar
8. Martinez, B. Obradors, X. Balcells, Ll., Rouanet, A. Monty, C. Phys. Rev. Lett. 80, 181 (1998). R.H.Kodama, A.E. Berkowitz, E.J. McNiff, S. Foner, J. Appl. Phys. 81, 5552 (1997).Google Scholar