Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-27T12:00:08.430Z Has data issue: false hasContentIssue false

Magnetic Resonance Study of Non-Equivalent Centers Created by 4f-Ions in Congruent and Stoichiometric Lithium Niobate

Published online by Cambridge University Press:  01 February 2011

Galina Malovichko
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Valentin Grachev
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Jonathan Jorgensen
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Martin Meyer
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Mark Munro
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Benjamin Todt
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Ian Vrable
Affiliation:
[email protected], Montana State University, Physics Department, Bozeman, Montana, United States
Edward Kokanyan
Affiliation:
[email protected], Institute of Physical Researches, Ashtarak, Armenia
Viktor Bratus
Affiliation:
[email protected], Institute of Semiconductor Physics, Kiev, Ukraine
Sergei Okulov
Affiliation:
[email protected], Institute of Semiconductor Physics, Kiev, Ukraine
Get access

Abstract

Lithium Niobate doped with 4f-ions is of great interest for both fundamental science and advanced applications including high efficiency lasers with frequency conversion, elements for an all-optical telecommunication network and quantum cryptography. Our study has shown that 4f-ions create an unexpected variety of completely different non-equivalent centers in both stoichiometric and lithium deficient congruent crystals. Dominant Nd1 and Yb1 centers have C3 point symmetry (axial center), whereas all Er and most other Nd and Yb centers have the lowest C1 symmetry. Distant defects create small distortions of the crystal field at the impurity site, which cause line broadening, but do not change the C3 symmetry of observed EPR spectra. Defects in the near neighborhood can lower center symmetry from C3 to C1. We concluded that Nd1 has distant charge compensation, whereas the charge excess in low-symmetry Nd(Li) centers is compensated by near lithium or niobium vacancies. Since no axial centers were found for Er, models with cation vacancies can not describe our experimental data. The dominant axial Yb1 center has no defects in its surrounding. One axial and one low-symmetry Yb centers are self compensating Yb(Li)-Yb(Nb) pairs. Six other centers are different complexes of Yb3+ and intrinsic defects. Obtained data can be used for defect engineering for tailoring properties of photonic materials.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vila, M., de Bernabe, A. and Prieto, C., Journal of Alloys and Compounds 323-324, 331 (2001).Google Scholar
2. Mackova, A., Groetzschel, R., Eichhorn, F., Nekvindoca, P. and Spirkova, J., Surf. Interface. Anal. 36, 949 (2004).Google Scholar
3. Kling, A., Da Silva, M.F., Soares, J.C., Sanz-Garcia, J.A. and Garcia-Sole, J., Rad. Effects and Defects in Solids 155, 229 (2001).Google Scholar
4. Lorenzo, A., Loro, H., Munoz Santuiste, J.E., Terrile, M.C., Boulon, G., Bausa, L.E. and Garsia Sole, J., Optical Materials 8, 55 (1997).Google Scholar
5. Herreros, B., Lifante, G., Kling, A., et al. Optical Materials 6, 281 (1996).Google Scholar
6. Lorenzo, A., Jaffiezic, H., Roux, B., Boulon, G. and Garcia Sole, J., Appl. Phys. Lett. 67, 3735 (1995).Google Scholar
7. Rebouta, L., Smulders, P.J.M., Boerma, D.O., Agullo-Lopez, F., da Silva, M.F. and Soares, J.C., Phys. Rev. B48, 3600 (1993).Google Scholar
8. Garcıa Sole, J., Bausa, L.E., Jaque, D., Montoya, E., Murrieta, H. and Jaque, F., Spectrochimica Acta, Part A 54, 1571 (1998).Google Scholar
9. Sokolska, , Praska, I. and Lukasievicz, T., J. Crystal Growth 198/199, 521 (1999).Google Scholar
10. Dierolf, V., Kutsenko, A.B., Ostendorf, A. and von der Osten, W., Sohler, W., and Suche, H., Applied Physics B 72, 803 (2001).Google Scholar
11. Dierolf, V., Kutsenko, A.B., Sandmann, C., et al. J. Luminescence 87, 989 (2000).Google Scholar
12. Dierolf, V. and Koerdt, M., Phys. Rev. B 61, 8043 (2000).Google Scholar
13. Kovacs, L., Rebouta, L., Soaresh, J.C. et al. J. Phys.: Condens. Matter. 5, 781 (1993).Google Scholar
14. Marques, J.G., Kling, A., Soares, J.C., Rebouta, L., da Silva, M.F., Diéguez, E. and Agulló-López, F., Nucl. Inst. Methods Phys. Res. B136-138x, 431 (1998).Google Scholar
15. Mignotte, C., Appl. Surf. Sci. 185, 11, (2001).Google Scholar
16. Evlanova, N.F., Kornienko, L.S., Rashkovich, L.N. and Rybaltovskii, A.O., Sov. Phys.: JETP 53, 1920 (1967).Google Scholar
17. Burns, G., O'Kane, D.F. and Title, R.S., Phys. Rev. 167, 314 (1968).Google Scholar
18. Bonardi, C., Magon, C. J., Vidoto, E. A., Terrile, M. C., Bausa, L. E., Montoya, E., Bravo, D., Martın, A. and Lopez, F. J., J. Alloys and Compounds 323–324, 340 (2001).Google Scholar
19. Nolte, T., Pawlik, T. and Spaeth, J.-M., Sol. State Communs., 104, 535 (1997).Google Scholar
20. Bodziony, T. and Kaczmarek, S. M., Opt. Mat. 29, 1440 (2007).Google Scholar
21. Bodziony, T., Kaczmarek, S. M. and Hanuza, J., J. Alloys and Compounds 451 (1/2), 240 (2008).Google Scholar
22. Bodziony, T., Kaczmarek, S. M. and Rudowicz, Cz., Physica B 403, 207 (2008).Google Scholar
23. Bodziony, T., Kaczmarek, S. M. and Rudowicz, Cz., Phys. Stat. Sol. (b) 245, 998 (2008).Google Scholar
24. Bodziony, T., Opt. Mater. (2008), doi:10.1016/j.optmat.2008.02.006.Google Scholar
25. Choh, S.H., Kim, J.H., Park, I.W., Kim, J.H., Choi, D. and Kim, S.S., Appl. Mag. Res. 24, 313 (2003).Google Scholar
27. Malovichko, G., Bratus, V., Munro, M. and Kokanyan, E., Okulov, S., Grachev, V., Physica Status Solidi (c) 4 1346 (2007).Google Scholar
28. Malovichko, G., Bratus, V., Grachev, V. and Kokanyan, E., Physica Status Solidi (b): DOI 10.1002/ pssb.200844164.Google Scholar