Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-06T05:13:47.523Z Has data issue: false hasContentIssue false

Magnetic Properties of Ni Nanoparticles Embedded in Amorphous SiO2

Published online by Cambridge University Press:  10 February 2011

Fabio C. Fonseca
Affiliation:
Instituto de Física, Universidade de São Paulo, CP 66318, 05315–970, São Paulo, SP, Brazil
Gerardo F. Goya
Affiliation:
Instituto de Física, Universidade de São Paulo, CP 66318, 05315–970, São Paulo, SP, Brazil
Renato F. Jardim
Affiliation:
Instituto de Física, Universidade de São Paulo, CP 66318, 05315–970, São Paulo, SP, Brazil
Reginaldo Muccillo
Affiliation:
Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, CCTM-Instituto de Pesquisas Energéticas e Nucleares, CP 11049, 05422–970, São Paulo, SP, Brazil
Neftalí L. V. Carreño
Affiliation:
Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560–905, São Carlos, SP, Brazil
Elson Longo
Affiliation:
Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560–905, São Carlos, SP, Brazil
Edson R. Leite
Affiliation:
Centro Multidisciplinar de Desenvolvimento de Materiais Cerâmicos CMDMC, Departamento de Química, Universidade Federal de São Carlos, CP 676, 13560–905, São Carlos, SP, Brazil
Get access

Abstract

A modified sol-gel technique was used to synthesize nanocomposites of Ni:SiO2 which resulted in Ni nanoparticles embedded in a SiO2 amorphous matrix. Transmission electron microscopy TEM analysis were performed to study the structure and morphology of the magnetic powders. The Ni particles were found to have a good dispersion and a controlled particle size distribution, with average particle radius of ∼ 3 nm. A detailed characterization of the magnetic properties was done through magnetization measurements M(T,H) in applied magnetic fields up to ± 7 T and for temperatures ranging from 2 to 300 K. The superparamagnetic (SPM) behavior of these metallic nanoparticles was inferred from the temperature dependence of the magnetization. The blocking temperature TB, as low as 20 K, was found to be dependent on Ni concentration, increasing with increasing Ni content. The SPM behavior above the blocking temperature TB was confirmed by the collapse of M/MS vs. H/T data in universal curves. These curves were fitted to a log-normal weighted Langevin function allowing us to determine the distribution of magnetic moments. Using the fitted magnetic moments and the Ni saturation magnetization, the radii of spherical particles were determined to be close to ∼ 3 nm, in excellent agreement with TEM analysis. Also, magnetic hysteresis loops were found to be symmetric along the field axis with no shift via exchange bias, suggesting that Ni particles are free from an oxide layer. In addition, for the most diluted samples, the magnetic behavior of these Ni nanoparticles is in excellent agreement with the predictions of randomly oriented and noninteracting magnetic particles. This was confirmed by the temperature dependence of the coercivity field that obeys the relation HC(T) = HC0 [1-(T/TB)1/2] below TB with HC0 ∼ 780 Oe.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ozaki, M., Mater. Res. Bull. XIV, 35 (1989).Google Scholar
2. Gleiter, H., Nanostruct. Mater. 1, 1 (1992).Google Scholar
3. Hayashi, T., Ohno, T., Yatsuya, S., Ueda, R., Jap. J. Appl. Phys. 16, 705 (1977).Google Scholar
4. Gavrin, A., Chien, C. L., J. Appl. Phys. 73, 6949 (1993).Google Scholar
5. González, E. M., Montero, M. I., Cebollada, F., de Julián, C., Vicent, J. L., González, J. M., Europhys. Lett. 42, 91 (1998).Google Scholar
6. Jung, J. S., Chae, W. S., McIntyre, R. A., Seip, C. T., Wiley, J. B., O';Connor, C. J., Mater. Res. Bull. 34, 1353 (1999).Google Scholar
7. Leite, E. R., Carreño, N. L. V., Longo, E., Valentini, A., and Probst, L. F. D., J. Nanosci. Nanotechnol. 2, 89 (2002).Google Scholar
8. Estournès, C., Lutz, T., Happich, J., Quaranta, T., Wissler, P., Guille, J. L., J. Magn. Magn. Mater. 173, 83 (1997).Google Scholar
9. Morris, C. A., Anderson, M. L., Stroud, R. M., Merzbacher, C. I., and Rolison, D. R., Science 284, 622 (1999).Google Scholar
10. Fonseca, F. C., Goya, G. F., Jardim, R. F., Muccillo, R., Carreño, N. L. V., Longo, E., and Leite, E. R., Phys. Rev. B 66, 104406 (2002).Google Scholar
11. Cullity, J. B. D., Introduction to magnetic materials (Addison-Wesley, Reading, Mass., 1972) Chap. 11.Google Scholar
12. Fraune, M., Rudiger, U., Guntherodt, G., Cardoso, S., and Freitas, P., Appl. Phys. Lett. 77, 3815 (2001).Google Scholar
13. Yao, Y. D., Chen, Y. Y., Tai, M. F., Wang, D. H., and Lin, H. M., Mater. Sci. Eng. A217, 837 (1996).Google Scholar
14. Kodama, R. H., Makhlouf, S. A., and Berkowitz, A. E., Phys. Rev. Lett. 79, 1393 (1997).Google Scholar
15. Bozorth, R. M., Ferromagnetism (Van Nostrand, Princenton N. J., 1956) Chap. 18, pag. 831.Google Scholar
16. Stoner, E. C. and Wohlfarth, E. P., Trans. Roy. Soc. (London) A240, 599 (1948).Google Scholar
17. McHenry, M. E., Majetich, S. A., Artman, J. O., DeGraef, M., and Staley, S. W., Phys. Rev. B 49, 11358 (1994).Google Scholar