Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-29T07:46:32.607Z Has data issue: false hasContentIssue false

Magnetic Penetration Depth Measurements and Inhomogeneity in YBa2Cu3O7−δ Superconducting Thin Films

Published online by Cambridge University Press:  28 February 2011

Steven M. Anlage
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
Brian W. Langley
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
Jurgen Halbritter
Affiliation:
Kernforschungszentrum Karlsruhe, Postfach 3640, D-7500, Karlsruhe 1, Federal Republic of Germany
Chang-Beom Eom
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
Neil Switz
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
T. H. Geballe
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
M. R. Beasley
Affiliation:
Department of Applied Physics, Stanford University, Stanford, California, 94305, USA
Get access

Abstract

The microstrip resonator technique has been applied to study the temperature dependence of the magnetic penetration depth in high quality YBa2Cu3O7−δ thin films. The temperature dependence at low temperatures comes out directly from measured data, with no assumptions about transmission line geometry, dielectric properties, or a model for the temperature dependence of the penetration depth. One can interpret the data in terms of either an exponential decay of λ(T) at low temperatures or as a power law decay. The energy gaps obtained from the exponential decay at low temperature are found to be significantly smaller than weak coupled BCS theory and power-law exponents are in the range of 1.3 to 3.2. These results will be discussed in terms of microscopic theories and the possibility that materials properties dominate the measurement.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meservey, R. andTedrow, P. M., J. Appl. Phys. 40, 2028 (1969).Google Scholar
2. Anlage, S. M., Snortland, H. J. andBeasley, M. R., IEEE Trans. Magn. MAG–25, 1388 (1989).Google Scholar
3. Matick, R. E., Transmission Lines for Digital and Communication Networks, (McGraw-Hill, New York, 1969), p. 243.Google Scholar
4. Anlage, S. M., Sze, H., Snortland, H. J., Tahara, S., Langley, B., Eom, C. B., Beasley, M. R. andTaber, R., Appl. Phys. Lett. 54, 2710 (1989).Google Scholar
5. Anlage, S. M., Langley, B. W., Snortland, H. J., Eom, C. B., Geballe, T. H. andBeasley, M. R., to appear in J. Superconductivity, Oct. 1990.Google Scholar
6. Eom, C. B., Sun, J. Z., Yamamoto, K., Marshall, A. F., Luther, K. E., Geballe, T. H. andLaderman, S. S., Appl. Phys. Lett. 55, 595 (1989).Google Scholar
7. Matijasevic, V., Rosenthal, P., Shinohara, K., Hammond, R. H., Marshall, A. andBeasley, M. R., Bull. Am. Phys. Soc. 35, 383 (1990); N. Missert, R. Hammond, J. E. Mooij, V. Matijasevic, P. Rosenthal, T. H. Geballe, A. Kapitulnik, M. R. Beasley, S. S. Laderman, C. Lu, E. Garwin and R. Barton, IEEE Trans. Mag. 25, 2418 (1989).Google Scholar
8. Anlage, S. M. et al. (in preparation).Google Scholar
9. Eom, C. B. et al. (submitted to Phys. Rev. B).Google Scholar
10. Oh, B., Char, K., Kent, A. D., Naito, M., Beasley, M. R., Geballe, T. H., Hammond, R. H. andKapitulnik, A., Phys. Rev. B 37, 7861 (1988).Google Scholar
11. Beasley, M. R., Physica B 148, 191 (1987).Google Scholar
12. Halbritter, J., Int. J. Mod. Phys. 3, 719 (1989).Google Scholar
13. Mannhart, J., Huebner, R. P., Kober, F., Koelle, D., Chaudhari, P., Dimos, D., Gross, R., Gupta, A., Koren, G. andTsuei, C. C., Presented at 3 Bar-Ilan Conference, to appear in Physica C.Google Scholar
14.In the thick film limit, the shielding currents flow only to a depth X below the surface, effectively reducing the cross sectional area A, and giving the same result for the inductivity.Google Scholar
15.The film inductivity is calculated from the measured λ(0) as L Film(0)= μ0 λ,2(0). The values for λ(0) are obtained from the microstrip resonator data by fiting the measured phase velocity as a function of temperature to a BCS theoretical temperature dependence (see reference 4) as tabulated by Muhlschlegel, B., Z. Phys. 155, 313 (1959). A film with penetration depth λ(0)=1400Å will have an inductivity of L Film Ideal = 2.5×10ࢤ10 HÅ.Google Scholar
16. Laderman, S. S. andTaber, R., (to be published).Google Scholar
17. Deutscher, G. and Entin-Wohlman, O., J. Phys. C 10, L433 (1977); T. L. Hylton and M. R. Beasley, Phys. Rev. B 39, 9042 (1989).Google Scholar
18. Halbritter, J., submitted to J. Appl. Phys.Google Scholar
19. Mannhart, J., Chaudhari, P., Dimos, D., Tsuei, C. C. andMcGuire, T. R., Phys. Rev. Lett. 61, 2476 (1988).Google Scholar