Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T15:21:56.782Z Has data issue: false hasContentIssue false

Magnetic Order and Structure of Ultrathin Films and Multilayers

Published online by Cambridge University Press:  15 February 2011

G. Lugert
Affiliation:
Institut für Angewandte Physik, Universität Regensburg, 8400 Regensburg, F.R.G.
G. Bayreuther
Affiliation:
Institut für Angewandte Physik, Universität Regensburg, 8400 Regensburg, F.R.G.
S. Lehner
Affiliation:
Institut für Angewandte Physik, Universität Regensburg, 8400 Regensburg, F.R.G.
G. Gruber
Affiliation:
Institut für Angewandte Physik, Universität Regensburg, 8400 Regensburg, F.R.G.
P. Bruno
Affiliation:
permanent address: I.E.F., Université Paris-Sud, Orsay, France
Get access

Abstract

Ultrathin epitaxial films grown in UHV – Fe(110) on Au(111) and Ag(111), Co(0001) on Au(111) – , sputtered Fe films between Ag and sputtered Fe/Au multilayers were studied by SQUID magnetometry and Mössbauer spectroscopy (CEMS). It could be shown that the magnetic anisotropy relative to the film normal, the, ground state magnetic moment per Fe atom and thermal spin excitations are affected by the structure of the films. In particular, a more 3-dimensional growth mode in the early state of film formation which is observed except in a certain temperature range around 300 K reduces the apparent magnetic interface anisotropy and the ferromagnetic ground state moment, and it enhances the thermal spin fluctuations and the tendency for superparamagnetic relaxation in the thinnest films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Jonker, B. T., H.Walker, K., Kisker, E., Prinz, G. A. and Carbone, C., Phys.Rev.Lett. 57, 142 [1986).CrossRefGoogle Scholar
[2] Koon, N. C., Jonker, B. T., Volkening, F. A., Krebs, J. J. and Prinz, G. A., Phys.Rev.Lett. 59,2463 (1987).CrossRefGoogle Scholar
[3] Stampanoni, M., Vaterlaus, A., Aeschlimann, M. and Meier, F., Phys.Rev.Lett. 59, 2483 (1987).CrossRefGoogle Scholar
[4] Néel, L., Compt. rend. acad. sc. 237,1468 (1953).Google Scholar
[5] Gay, J. G. and Richter, J., J.Appl.Phys. 61, 3362 (1987).CrossRefGoogle Scholar
[6] Karas, W., Noffke, J. and Fritsche, L., J. de chimie phys. 86, 861 (1989).CrossRefGoogle Scholar
[7] Chun, Li, Freeman, A. J., Jansen, H. J. F. and Fu, C. L., Phys.Rev.B 42, 5433 (1990).Google Scholar
[8] Bruno, P. and Renard, J. P., Appl.Phys. A 49, 499 (1989).CrossRefGoogle Scholar
[9] Bayreuther, G., Lugert, G., Gruber, G. and Lehner, S., to be publishedGoogle Scholar
[10] Chappert, C. and Bruno, P., J.Appl.Phys. 64, 5736 (1988).CrossRefGoogle Scholar
[11] Bruno, P., Bayreuther, G., Beauvillain, P., Chappert, C., Lugert, G., Renard, D., Renard, J. P. and Seiden, J., J.Appl.Phys. 68, 5759 (1990).CrossRefGoogle Scholar
[12] Bayreuther, G., Bruno, P., Lugert, G. and Turtur, C., Phys.Rev. B 40, 7399 (1989).CrossRefGoogle Scholar
[13] Pommier, J., Meyer, P., Ténissard, G., Ferré, J., Bruno, P. and Renard, D., Phys.Rev.Lett. 65, 2054 (1990).CrossRefGoogle Scholar
[14] Fu, C. L., Freeman, A. J. and Oguchi, T., Phys.Rev.Lett. 54, 2700, (1985).CrossRefGoogle Scholar
[15] Freeman, A. J. and Fu, C. L., J.Appl.Phys. 61, 3356 (1987).CrossRefGoogle Scholar
[16] Lugert, G. and Bayreuther, G., submitted for publicationGoogle Scholar
[17] Lugert, G. and Bayreuther, G., Phys.Rev.B 38, 11068 (1988).CrossRefGoogle Scholar