Hostname: page-component-78c5997874-j824f Total loading time: 0 Render date: 2024-11-19T05:24:33.175Z Has data issue: false hasContentIssue false

Magnetic Collapse and Insulator-Metal Transitions in Some 3D Metal Oxides Under High Pressures

Published online by Cambridge University Press:  26 February 2011

Igor S. Lyubutin
Affiliation:
[email protected], Institute of Crystallography, Russian Academy of Sciences, Resonance Methods, Leninskii prospekt 59, Moscow, 119333, Russian Federation, +7(495)135-6250, +7(495) 135-1011
Alexander G. Gavriliuk
Affiliation:
[email protected], Institute for High Pressure Physics, Troitsk, Moscow region, 142190, Russian Federation
Viktor Struzhkin
Affiliation:
[email protected], Carnegie Institution of Washington, Geophysical Laboratory, 5251 Broad Branch Road NW, Washington, DC, 20015, United States
Get access

Abstract

In the systems with strong electron correlations, many theories predict the high-pressure-induced dielectric-metal transition, which is followed by collapse of localized magnetic moment and structural phase transition. In this report, summary results of many last experiments on the influence of high pressure on the magnetic and crystal structure as well on the electronic and transport properties of 3d metal oxides is presented. Along with X-ray diffraction, optical absorption, Raman scattering and electroresistivity measurements, several synchrotron radiation techniques have also been applied to perform the high-pressure experiments with compound iron oxides having different crystal structures.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Cohen, R. E., Mazin, I. I. and Isaak, D. G., Science 275, 654 (1997).Google Scholar
2. Gavrilyuk, A. G., Trojan, I. A., Ovchinnikov, S. G., and Lyubutin, I. S., JETP 99, 566 (2004).Google Scholar
3. Gavriliuk, A. G., Trojan, I. A., Lyubutin, I. S., and Ovchinnikov, S. G., JETP 100, 688 (2005).Google Scholar
4. Lyubutin, I. S., Gavriliuk, A. G., Trojan, I. A., Sadykov, R. A., JETP Lett. 82, 797 (2005).Google Scholar
5. Gyorgy, E. M., Nassau, K., Eibschutz, M., et al., J. Appl. Phys. 50, 2883 (1979).Google Scholar
6. Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Eremets, M. I., Trojan, I. A., Artemov, V. V., JETP Lett. 83, 41 (2006).Google Scholar
7. Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., Hu, M. Y., Mao, H. K., JETP Lett. 82, 224 (2005).Google Scholar
8. Lin, Jung-Fu, Gavriliuk, Alexander G., Struzhkin, Viktor et al., Phys. Rev. B 73(1), 113107-1 – 113107-4 (2006).Google Scholar
9. Lyubutin, I. S., Gavriliuk, A. G., Struzhkin, V. V., Ovchinnikov, S. G., Kharlamova, S. A., Bezmaternykh, L. N., Hu, M., Chow, P., JETP Lett. 84, 518 (2006).Google Scholar
10. Badro, J., Struzhkin, V., Shu, J.-F., et al., Phys. Rev. Lett. 83, 4101 (1999).Google Scholar
11. Gavriliuk, A. G., Lin, J. F., Lyubutin, I. S., Struzhkin, V. V., JETP Lett. 84, 161 (2006).Google Scholar
12. Lin, J. F., Struzhkin, V. V., Jacobsen, S. D., Hu, M., Chow, P., Kung, J., Liu, H., Mao, H. K., and Hemley, R. J., Nature 436, 377 (2005).Google Scholar
13. Gavriliuk, A. G., Trojan, I. A., Boehler, R., Eremets, M. I., Lyubutin, I. S., and Serebryanaya, N. R.. JETP Lett. 77, 619 (2003).Google Scholar
14. Trojan, I. A., Eremets, M. I., Gavriliuk, A. G., Lyubutin, I. S., and Sarkissyan, V. A.,. JETP Lett. 78, 13 (2003).Google Scholar
15. Gavriliuk, A. G., Kharlamova, S. A., Lyubutin, I. S., Trojan, I. A., Ovchinnikov, S. G., Potseluyko, A. M., Eremets, M. I., Boehler, R., JETP Lett. 80, 426 (2004).Google Scholar
16. Gavriliuk, A. G., Struzhkin, V. V., Lyubutin, I. S., and Trojan, I. A., JETP Lett. 82, 603 (2005).Google Scholar
17. Gavriliuk, A. G., Struzhkin, V. V., Lubutin, I. S., “Phase transitions in multiferroic BiFeO3”, is reported in current issue of Proceedings.Google Scholar