Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:17:59.305Z Has data issue: false hasContentIssue false

The Magnetic Behavior of Triangular Shaped Permalloy Nanomagnet Arrays

Published online by Cambridge University Press:  01 February 2011

J. Y. Shiu
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, Taipei 115, Taiwan
M. F. Tai
Affiliation:
Department of Physics, National Chung-Cheng University, Chia-Yi 621, Taiwan
Y. D. Yao
Affiliation:
Institute of Physics, Academia Sinica, Taipei 115, Taiwan
C. W. Kuo
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, Taipei 115, Taiwan
P. Chen
Affiliation:
Institute of Applied Science and Engineering Research, Academia Sinica, Taipei 115, Taiwan
Get access

Abstract

During the past few decades, the density of magnetic storage has been improved considerably. To increase the storage capacity, it is necessary to reduce the size of magnetic grains. However, as the domain size decreases, their thermal stability will also decrease, which results in the loss of magnetization. To overcome the limit imposed by such superparamagnetic behavior, lots of recent research attentions have been focused on the patterned magnetic media. To maximize the storage density, it is preferable to create periodical magnetic patterns, in which single-domain magnetic dots are well separated from each other. In this experiment, we have utilized nanosphere lithography to create large-area well-ordered two dimension arrays of permalloy (Ni80Fe20) nanoparticles. Nanosphere lithography is an inexpensive, simple, parallel, and high throughput fabrication technique. We have employed monodisperse polystyrene beads with diameter of 650, 560, 440, 350, 280 nm to fabricate triangle-shaped permalloy (Ni80Fe20) nano-arrays with lateral dimension in the region of 170∼90 nm, and thickness in the region of 10∼50 nm. The magnetic behavior of these triangle-shaped nanomagnet arrays have been investigated by longitudinal magnetic optic Kerr effect (LMOKE) and magnetic force microscopy (MFM). It was found that the coercivity of the permalloy nanoparticle arrays increases with decreasing the thickness of the nanoparticle. This can be attributed to the interface effect between the arrays and the substrate.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Feldstein, M.J., Keating, C.D., Liau, Y.-H., Natan, M.J., Scherer, N.F., J. Am. Chem. Soc. 119, 6338 (1997).Google Scholar
2. Hehn, M., Ounadjela, K., Bucher, J.-P., Rousseauz, F., Decanni, D., Bartenlian, B., Science, 272, 1782 (1996).Google Scholar
3. Heiz, U., Vanolli, F., Sanchez, A., Schneider, W.-D., J. Am. Chem. Soc. 120, 9668 (1998).Google Scholar
4. Andres, R.P., Bielefeld, J.D., Henderson, J.I., Janes, D.B., Kolagunta, V.R., Kubiak, C.P., Mahoney, W.J., Osifchin, R.G., Science, 273, 1690 (1996).Google Scholar
5. Haynes, C.L., Van Duyne, R.P., J. Phys. Chem. B, 105, 5599 (2001).Google Scholar
6. Fischer, U.C., Zingsheim, H.P., J. Vac. Sci. Technol., 19, 881 (1981).Google Scholar
7. Deckman, H.W., Dunsmuir, J.H., J. Vac. Sci. Technol. B, 1, 1109 (1983).Google Scholar
8. Hulteen, J.C., Van Duyne, R.P., J. Vac. Sci. Technol. A, 13, 1553 (1995).Google Scholar
9. Micheletto, R., Fukuda, H., Ohtsu, M., Langmuir, 11, 3333 (1995).Google Scholar
10. Lenzman, F., Li, K., Kitai, A.H., Stover, H.D.H., Chem. Mater., 6, 156 (1994).Google Scholar
11. Boneberg, J., Burmeister, F., Schafle, C., Leiderer, R., Reim, D., Frey, A., Herminghaus, S., Langmuir, 13, 7080 (1997).Google Scholar
12. Vlasov, Y.A., Bo, X.Z., Sturm, J.C., Norris, D.J., Nature, 414, 289 (2001).Google Scholar
13. Braun, P.V., Wiltzius, P., Nature, 402, 603 (1999).Google Scholar
14. Blanco, A., Chomski, E., Grabtchak, S., Ibisate, M., John, S.; Leonard, S.W., Lopez, C., Meseguer, F., Miguez, H., Mondia, J.P., Ozin, G.A., Toader, O., Van Driel, H.M., Nature, 405, 437 (2000).Google Scholar
15. Jiang, P., Bertone, J.F., Colvin, V.L., V.L., , Science, 291, 453 (2001).Google Scholar
16. Han, S., Shi, X., Zhou, F., Nano Lett. 2, 97 (2002).Google Scholar