Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-27T02:15:44.444Z Has data issue: false hasContentIssue false

Magnetic and Structural Properties of Mn-implanted Si

Published online by Cambridge University Press:  01 February 2011

M. Bolduc
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
C. Awo-Affouda
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
A. Stollenwerk
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
M. B. Huang
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
F. Ramos
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
G. Agnello
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
V. P. LaBella
Affiliation:
College of Nanoscale Science and Engineering, University at Albany-SUNY, Albany New York 12203, USA
Get access

Abstract

P-type Si wafers (∼1019 cm−3) were implanted with 300 keV Mn+ ions at 350°C to a dose of 1×1016 cm−2, and then annealed at 800°C for 5 min. The magnetic properties with dependence upon temperature were measured by using a Superconducting Quantum Interference Device (SQUID) magnetometer. The Mn-implanted Si compound shows ferromagnetic ordering above room temperature. The saturation magnetization increases by ∼ 2 × after annealing and the Curie temperature is TC > 400 K. The structural properties have been investigated by means of Secondary Ion Mass Spectroscopy (SIMS) depth profiling and Transmission Electron Microscope (TEM) imaging. Measurements showed that the Mn atoms redistribute in the Si crystal due to the thermal annealing and form a band layer composed of nanoscale structures such as crystallites or defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Wolf, S. A., Awschalom, D. D., Buhrman, R. A., Daughton, J. M., von Molnar, S., Roukes, M. L., Chtchelkanova, A. Y., and Treger, D. M., Science 294, 1488 (2001).Google Scholar
[2] Awschalom, D. D. and Kikkawa, J. M., Phys. Today 52, 33 (1999).Google Scholar
[3] Ohno, H., Science 281, 951 (1998).Google Scholar
[4] Dietl, T., Semicond. Sci. Technol. 17, 377 (2002).Google Scholar
[5] Pearton, S. J., Abernathy, C. R., Norton, D. P., Hebard, A. F., Park, Y. D., Boatner, L. A., and Budai, J. D., Mater. Sci. Eng. R Rep. R40, 137 (2003).Google Scholar
[6] Ohno, Y., Young, D. K., Beschoten, B., Matsukura, F., Ohno, H., and Awschalom, D. D., Nature 402, 790 (1999).Google Scholar
[7] Akinaga, H., Miyanishi, S., Tanaka, K., van Roy, W., and Onodera, K., Appl. Phys. Lett. 76, 97 (2000).Google Scholar
[8] Park, Y. D., Jonker, B. T., Bennett, B. R., Itskos, G., Furis, M., Kioseoglou, G., and Petrou, A., Appl. Phys. Lett. 77, 3989 (2000).Google Scholar
[9] Chen, X., Na, M., Cheon, M., Wang, S., Luo, H., McCombe, B. D., Liu, X., Sasaki, Y., Wojtowicz, T., Furdyna, J. K., et al., Appl. Phys. Lett. 81, 511 (2002).Google Scholar
[10] Overberg, M. E., Gila, B. P., Thaler, G. T., Abernathy, C. R., Pearton, S. J., Theodoropoulou, N. A., McCarthy, K. T., Arnason, S. B., Hebard, A. F., Chu, S. N. G., et al., J. Vac. Sci. Technol. B 20, 969 (2002).Google Scholar
[11] Hebard, A. F., Rairigh, R. P., Kelly, J. G., Pearton, S. J., Abernathy, C. R., Chu, S. N. G., and Wilson, R. G., J. Phys. D; Appl. Phys. (UK) 37, 511 (2004).Google Scholar
[12] Kucheyev, S. O., Williams, J. S., and Pearton, S. J., Mater. Sci. Eng. R Rep. R33, 51 (2001).Google Scholar
[13] Theodoropoulou, N., Hebard, A. F., Overberg, M. E., Abernathy, C. R., and Pearton, S. J., Phys. Rev. Lett. 89, 107203 (2002).Google Scholar
[14] Shi, J., Kikkawa, J. M., Awschalom, D. D., Medeiros-Ribeiro, G., Petroff, P. M., and Babcock, K., J. Appl. Phys. 79, 5296 (1996).Google Scholar
[15] Serres, A., Respaud, M., Benassayag, G., Armand, C., Pesant, J. C., Mari, A., Lifiental-Weber, Z., and Claverie, A., Physica E 17, 371 (2003).Google Scholar
[16] Theodoropoulou, N., Hebard, A. F., Chu, S. N. G., Overberg, M. E., Abernathy, C. R., Pearton, S. J., Wilson, R. G., and Zavada, J. M., J. Appl. Phys. 91, 7499 (2002).Google Scholar
[17] Wellmann, P. J., Garcia, J. M., Feng, J. L., and Petroff, P. M., Appl. Phys. Lett. 71, 2532 (1997).Google Scholar
[18] Yokota, T., Fujimura, N., Morinaga, Y., and Ito, T., Physica E 10, 237 (2001).Google Scholar
[19] Nakayama, H., Ohta, H., and Kulatov, E., Physica B 302–303, 419 (2001).Google Scholar
[20] Bolduc, M., Awo-Affouda, C., Stollenwerk, A., Huang, M. B., Ramos, F. G., Agnello, G., and LaBella, V. P., Phys. Rev. B 70, (in press) (2004).Google Scholar
[21] Bader, R. and Kalbitzer, S., Appl. Phys. Lett. 16, 13 (1970).Google Scholar
[22] Sadana, D. K., Norcott, M. H., Wilson, R. G., and Dahmen, U., Appl. Phys. Lett. 49, 1169 (1986).Google Scholar
[23] Wilson, R. G., Jamba, D. M., Sadana, D. K., and Hopkins, C. G., J. Appl. Phys. 61, 1355 (1987).Google Scholar
[24] Woodbury, H. H. and Ludwig, G. W., Phys. Rev. 117, 102 (1960).Google Scholar