Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-14T02:31:05.480Z Has data issue: false hasContentIssue false

The Luminescent Properties of Ion-Implantation-Fabricated SiO2:nc-Si Nanostructures Annealed at High Temperatures

Published online by Cambridge University Press:  15 February 2011

David I. Tetelbaum
Affiliation:
Physico-Technical Research Institute of University of Nizhny Novgorod, 23/3 Gagarin prospect, Nizhny Novgorod, 603950, RUSSIA
Oleg N. Gorshkov
Affiliation:
Physico-Technical Research Institute of University of Nizhny Novgorod, 23/3 Gagarin prospect, Nizhny Novgorod, 603950, RUSSIA
Alexandr P. Kasatkin
Affiliation:
Physico-Technical Research Institute of University of Nizhny Novgorod, 23/3 Gagarin prospect, Nizhny Novgorod, 603950, RUSSIA
Vladimir A. Burdov
Affiliation:
Physico-Technical Research Institute of University of Nizhny Novgorod, 23/3 Gagarin prospect, Nizhny Novgorod, 603950, RUSSIA
Sergey A. Trushin
Affiliation:
Physico-Technical Research Institute of University of Nizhny Novgorod, 23/3 Gagarin prospect, Nizhny Novgorod, 603950, RUSSIA
Alexey N. Mikhaylov
Affiliation:
Institute for Physics of Microstructures of Russian Academy of Science, GSP-105, Nizhny Novgorod, 603950, RUSSIA
Daria M. Gaponova
Affiliation:
Institute for Physics of Microstructures of Russian Academy of Science, GSP-105, Nizhny Novgorod, 603950, RUSSIA
Get access

Abstract

The influence of the Si+ implantation dose and postimplantation annealing temperature on the photoluminescence (PL) intensity of silicon nanoinclusions in an SiO2 matrix was experimentally investigated. The way that the PL varied with dose and annealing temperature was explained on the basis of a model which takes into account the Ostwald ripening of nanocrystals and effect of the quantum dot size on the rate of radiative recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Shimizu-Iwayama, T., Kurumado, N., Hole, D.E., Townsend, P.D., J. Appl. Phys. 83, 6018 (1998)Google Scholar
2. Fernandez, B. Garrido, Lopez, M., Garcia, C., Perez-Rodriguez, A., Morante, J. R., Bonafos, C., Carrada, M., and Claverie, A., J. Appl. Phys. 91, 798 (2002)Google Scholar
3. Tetelbaum, D.I., Gorshkov, O.N., Trushin, S.A., Revin, D.G., Gaponova, D.M., Eckstein, W., Nanotechnology 11, 295 (2000)Google Scholar
4. Tetelbaum, D.I., Burdov, V.A., Trushin, S.A., Mikhaylov, A.N., Revin, D.G., Gaponova, D.M., Proceedings of 2001 MRS Fall Meeting 692 (2001).Google Scholar
5. Trushin, S.A., Mikhailov, A.N., Tetelbaum, D.I., Gorshkov, O.N., Revin, D.G., Gaponova, D.M., Surf. Coat. Tech. 158-159, 717 (2002)Google Scholar
6. Lifshitz, I.M. and Slyosov, V.V., J. Phys. Chem. Solids 19, 35 (1961)Google Scholar
7. Bonafos, C., Colombeau, B., Altibelli, A., Carrada, M., Assayag, G. Ben, Garrido, B.,Lopez, M., Perez-Rodriguez, A., Morante, J. R., Claverie, A., Nucl. Instrum. Meth. B178, 17 (2001)Google Scholar
8. Wait, T.R., Phys. Rev. 107, 463 (1957)Google Scholar
9. Anselm, A.I., Introduction to Semiconductor Theory, Prentice-Hall, Englewood Cliffs (1981).Google Scholar
10. Kopylov, A.A., Sov. Phys. Semicond. 16, 1380 (1982)Google Scholar
11. Burdov, V.A., J. Exp. Theor. Phys. 94, 411 (2002)Google Scholar
12. Agarwal, A.M., Dunham, S.T., J. Appl. Phys. 78, 5313 (1995)Google Scholar
13. Tetelbaum, D.I., Trushin, S.A., Mikhaylov, A.N., Vasil'ev, V.K., Kachurin, G.A., Yanovskaya, S.G., Gaponova, D.M., Physica E 16, 410 (2003)Google Scholar
14. Kachurin, G. A., Yanovskaya, S. G., Ruault, M.-O., Gutakovski, A. K., Zhuravlev, K. S., Kaitasov, O., Bernas, H., Semiconductors 34, 965 (2000)Google Scholar
15. Tetelbaum, D.I., Trushin, S.A., Burdov, V.A., Golovanov, A.I., Revin, D.G., Gaponova, D.M., Nucl. Instrum. Meth. B174, 123 (2001)Google Scholar