Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-25T17:28:03.953Z Has data issue: false hasContentIssue false

Luminescence Study for Band Discontinuity in Free-Standing CdZnS/ZnS Strained Layer Multi-Quantum Wells

Published online by Cambridge University Press:  21 February 2011

T. Yokogawa
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
T. Ishikawa
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
J. L. Merz
Affiliation:
Department of Electrical and Computer Engineering, University of California, Santa Barbara, Santa Barbara, California 93106, USA
T. Taguchi
Affiliation:
Department of Electrical Engineering, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan
Get access

Abstract

We present the results of luminescence studies for free-standing CdZnS/ZnS strained layer multi-quantum wells (MQWs). PL measurements of the CdZnS/ZnS MQW at 1.4 K show intense, sharp excitonic emission in blue-ultraviolet spectral region. The band discontinuity is estimated by an analysis of the luminescence results in terms of a finite-potential well model. A free-standing MQW is assumed. The calculated zero-stress band discontinuity is in extremely good agreement with the value from Harrison’s model.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Taguchi, T. and Endoh, Y., Jpn. Appl. Phys. Lett. 30, L952 (1991).Google Scholar
2 Taguchi, T. and Endoh, Y., Appl. Phys. Lett. 59,3434 (1991).Google Scholar
3 Yamada, Y., Masumoto, Y., Mullins, J. T., and Taguchi, T., Appl. Phys. Lett. 61, 2190 (1992).Google Scholar
4 Yamaga, S., Yoshikawa, A., and Kasai, H., J. Cryst. Growth 99,432 (1990).Google Scholar
5 Fujita, Sz., Hayashi, S., Funato, M., and Fujita, Sg., J. Cryst. Growth 99,437 (1990).Google Scholar
6 Walter, W. and Birman, J. L., Proc. Int. Conf. II-VI Compounds, edited by Aven, M. and Prener, J. S. (North-Holland Publ. Comp., Amsterdam, 1967), p223.Google Scholar
7 Voigt, J., Spiegelberg, F., and Senoner, M., Phys. Status Solidi (b) 91,189 (1979).Google Scholar
8 Lozykowski, H. J., and Shastri, V. K., J. Appl. Phys. 69,3235 (1991).Google Scholar
9 Van de Walle, C. G., Phys. Rev. B39, 1871 (1986).Google Scholar
10 Gershoni, D., Temkin, H., and Panish, M. B., Phys. Rev. B38,7870 (1988).Google Scholar
11 Pollak, F. H. and Cardona, M., Phys. Rev. 172,816 (1968).Google Scholar
12 Van de Walle, C. G. and Martin, R. M., Phys. Rev. B35, 8154 ( 1987).Google Scholar
13 McCaldin, J. O., McGill, T. C., and Mead, C. A., Phys. Rev. Lett. 36, 56 (1976).Google Scholar
14 Berlincourt, D., Jaffe, H., and Shinozawa, L. R., Phys. Rev. 129, 1009 (1963).Google Scholar
15 Kukimoto, H., Shionoya, S., Koda, T., and Hioki, T., J. Phys. Chem. Solids, 29, 935 (1968).Google Scholar
16 Lawaetz, P., Phys. Rev. B4,3460 (1971).Google Scholar
17 Shahzad, K., Olego, D. J., and Van de Walle, C. G., Phys. Rev. B38, 1417 (1988).Google Scholar
18 Segall, B. and Marple, D. T. F., Physics and Chemistry of II-VI compounds, edited by Aven, M. and Prener, J. S. (North-Holland Publ. Comp., Amsterdam, 1967), p319.Google Scholar
19 Harrison, W. A., Electronic Structure and Properties of Solids ; Physics of Chemical Bond (W. H. Freeman and Company, San Francisco, 1980), p77.Google Scholar