Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-20T00:06:43.070Z Has data issue: false hasContentIssue false

Luminescence Of A New Material: GaN Grown On NdGaO3

Published online by Cambridge University Press:  10 February 2011

K. P. Korona
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
K. Pakula
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
A. Wysmolek
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
J. M. Baranowski
Affiliation:
Institute of Experimental Physics, Warsaw University, ul. Hoza 69, 00–681 Warszawa, Poland
J. P. Bergman
Affiliation:
Dept. of Physics and Measurement Technology, Linköping University, S -581 83 Linköping, Sweden
B. Monemar
Affiliation:
Dept. of Physics and Measurement Technology, Linköping University, S -581 83 Linköping, Sweden
T. Łukasiewicz
Affiliation:
Institute of Electronic Materials Technology, W61czynska 133, 01–919 Warszawa, Poland
Z. Łuczyński
Affiliation:
Institute of Electronic Materials Technology, W61czynska 133, 01–919 Warszawa, Poland
Get access

Abstract

It is shown that heteroepitaxial GaN layers grown on NdGaO3, in spite of a very high conductivity (˜ 10 Ω−1cm−1) have very efficient luminescence properties. It is shown that a high electrical conductivity is caused by contamination of GaN layers with oxygen. Efficient emission due to donor bound excitons (at hv = 3.475 eV), free excitons and free electron – hole recombination have been identified. The total PL emission in the exciton region exceeds the intensity from the homoepitaxial GaN layers. It is argued that a high oxygen concentration eliminates nonradiative channels connected with point defects, leading to efficient radiative recombination.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

[1] Ubizskii, S. B., Vasylechko, L. O., Savytskii, D. I., Matkovskii, A. O., Syvorotka, I. M., Supercond. Sci. Technol. 7, p. 766 (1994)Google Scholar
[2] O‘Bryan, H. M., Gallager, K. P., Berkstresser, G. W., Brandle, C. D., J. Mater. Res.Google Scholar
[3] Pakula, K., Wysmolek, A., Korona, K. P., Baranowski, J. M., Stepniewski, R., Grzegory, I., Lucznik, B., Wróblewski, M., Porowski, S., Solid State Commun. 97, p. 919 (1996)Google Scholar
[4] Monemar, B., Bergman, J. P., Ivanov, I. G., Baranowski, J. M., Pakula, K., Grzegory, I., Porowski, S., Solid State Commun. 104, p. 205 (1997)Google Scholar
[5] Bergman, J.P., Monemar, B., Amano, H., Akasaki, I., Detchprohm, T., Hiramatsu, K. and Sawaki, N., Proc. ICSCRM'95, Kyoto 1995, IOP Conference Proceedings 142, p. 931 (1996).Google Scholar