Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-25T17:46:43.621Z Has data issue: false hasContentIssue false

Luminescence in Multilayers of SiGe Nanocrystals Embedded in SiO2

Published online by Cambridge University Press:  01 February 2011

Manual Avella
Affiliation:
[email protected], Universidad de Valladolid, Física de la Materia Condensada, E.T.S.I.I., Paseo del Cauce s/n, Valladolid, 47011, Spain, +34 983423191
Ángel Carmelo Prieto
Affiliation:
[email protected], Univ. de Valladolid, Física de la Materia Condensada, E.T.S.I.I., Valladolid, 47011, Spain
Juan Jiménez
Affiliation:
[email protected], Univ. de Valladolid, Física de la Materia Condensada, E.T.S.I.I., Valladolid, 47011, Spain
Andrés Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, E.T.S.I.T., Madrid, 28040, Spain
Jesús Sangrador
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, E.T.S.I.T., Madrid, 28040, Spain
Tomás Rodríguez
Affiliation:
[email protected], Universidad Politécnica de Madrid, Tecnología Electrónica, E.T.S.I.T., Madrid, 28040, Spain
María Isabel Ortiz
Affiliation:
[email protected], Universidad Carlos III de Madrid, E.P.S., Física, Leganés (Madrid), 28911, Spain
Carmen Ballesteros
Affiliation:
[email protected], Universidad Carlos III de Madrid, E.P.S., Física, Leganés (Madrid), 28911, Spain
Andreas Kling
Affiliation:
[email protected], Instituto Tecnológico e Nuclear, Estrada Nacional 10, Sacavém, 2686-953, Portugal
Get access

Abstract

Luminescent multilayers of SiGe nanocrystals embedded in an oxide matrix have been fabricated by Low Pressure Chemical Vapour Deposition of a-SiGe and SiO2 in a single run followed by a Rapid Thermal Annealing treatment. The diameter of the nanoparticles, the oxide interlayer thickness and the annealing conditions have been investigated in order to get the maximum intensity of the luminescence. The structures with small nanoparticles (3-4.5 nm) separated by thick oxide barriers (≈35 nm) annealed at 900 °C for 60 s yield the maximum intensity. These samples exhibit luminescence from 80 K to room temperature. An additional treatment at 450 °C in forming gas further increases the intensity of this luminescence.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Zacharias, M., Yi, L.X., Heitmann, J., Scholz, R., Reiche, M., Gösele, U.. Solid State Phenomena 94, 131 (2003).Google Scholar
2. Lu, T. Z., Alexe, M., Scholz, R., Telelaev, V., M. Zacharias. Appl. Phys. Lett. 87, 202110 (2005).Google Scholar
3. Mestanza, S. N. M., Rodríguez, E., N. C. Frateschi. Nanotechnology 17, 4548 (2006).Google Scholar
4. Stoica, T., Sutter, E.. Nanotechnology 17, 4912 (2006).10.1088/0957-4484/17/19/022Google Scholar
5. Ortiz, M. I., Sangrador, J., Rodríguez, A., Rodríguez, T., Kling, A., Franco, N., Barradas, N. P., Ballesteros, C.. Phys. Stat. Sol. (a) 203, 1284 (2006).Google Scholar
6. Ortiz, M. I., Rodríguez, A., Sangrador, J., Rodríguez, T., Avella, M., Jiménez, J., Ballesteros, C.. Nanotechnology 16, S197 (2005).Google Scholar
7. Doolittle, L. R.. Nucl. Instr. and Meth. in Phys. Res. B 9, 344 (1985); http://www.genplot.com.Google Scholar
8. Kling, A., Ortiz, M. I., Sangrador, J., Rodríguez, A., Rodríguez, T., Ballesteros, C., Soares, J. C.. Nucl. Instr. and Meth. in Phys. Res. B 249, 451 (2006).Google Scholar
9. Williams, G. V. M., Bittar, A., Trodahl, H. J.. J. Appl. Phys. 67, 1874 (1990).Google Scholar
10. Zacharias, M., Streintenberger, P.. Phys. Rev. B 62, 8391 (2000).Google Scholar
11. Shiraishi, K., Airawa, Y., and Kawakami, S.. J. Lightwave Technol. 8, 1151, (1990).Google Scholar
12. Avella, M., Prieto, A. C., Jiménez, J., Rodríguez, A., Sangrador, J., Rodríguez, T.. Solid State Communications 136, 224 (2005).Google Scholar
13. Comedi, D., Zalloum, O. H. Y., and Mascher, P.. Appl. Phys. Lett. 87, 213110 (2005).Google Scholar