Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T07:33:43.194Z Has data issue: false hasContentIssue false

Low-Temperature Crystallization of Pb(Zr0.4,Ti0.6)O3 Thin Films by Chemical Solution Deposition

Published online by Cambridge University Press:  17 March 2011

Kazunari Maki
Affiliation:
Mitsubishi Materials Corporation, Development Section, Sanda Plant, 12-6, Technopark, Sanda, Hyogo 669-1339, Japan
Nobuyuki Soyama
Affiliation:
Mitsubishi Materials Corporation, Development Section, Sanda Plant, 12-6, Technopark, Sanda, Hyogo 669-1339, Japan
Kaoru Nagamine
Affiliation:
Mitsubishi Materials Corporation, Development Section, Sanda Plant, 12-6, Technopark, Sanda, Hyogo 669-1339, Japan
Satoru Mori
Affiliation:
Mitsubishi Materials Corporation, Development Section, Sanda Plant, 12-6, Technopark, Sanda, Hyogo 669-1339, Japan
Katsumi Ogi
Affiliation:
Mitsubishi Materials Corporation, Naka Research Center, Central Research Institute, 1002-14 Mukohyama, Naka-Machi, Naka-Gun, Ibaraki 311-0102, Japan
Get access

Abstract

We studied the crystallization of sol-gel derived Pb(Zr0.4Ti0.6)O3 [PZT(40/60)] thin films at 400 down to 390°C on Pt/SiO2/Si substrates by combination of diol-based solutions and modified film preparation processes. It was found that PZT films could be crystallized at 390°C and that PZT films crystallized at 400°C had microstructures with perovskite-single-phase columnar grains and good ferroelectric characteristics such as switched polarization (2 Pr) of 20 μC/cm2 and relative permittivity (εr) of 740. Next, we evaluated annealing temperature dependence of PZT(40/60) thin films crystallized at 390 to 435°C. The results indicated that (111)-orientation of perovskite phases became weaker, (100)-orientation of those became stronger, and the perovskite grain size increased with decreasing in annealing temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schwartz, R. W., Chem. Mater. 9, 2325 (1997).Google Scholar
2. Budd, K. D., Dey, S. K. and Payne, D.A., Br. Ceram. Proc. 36, 107 (1985).Google Scholar
3. Chapin, L. N. and Myers, S. A., Mat. Res. Soc. Symp. Proc. 200, 153 (1990).Google Scholar
4. Suzuki, H., Koizumi, T., Kondo, Y. and Kaneko, S., J. Eur. Ceram. Soc. 19, 1397 (1999).Google Scholar
5. Hirano, S., Yogo, T., Kikuta, K., Araki, Y., Saitoh, M. and Ogasahara, S., J. Am. Ceram. Soc. 75, 2785 (1992).Google Scholar
6. Suzuki, H., Othman, M. B., Murakami, K., Kaneko, S. and Hayashi, T., Jpn. J. Appl. Phys. 35, 4896 (1996).Google Scholar
7. Huang, Z., Zhang, Q. and Whatmore, R. W., J. Appl. Phys. 85, 7355 (1999).Google Scholar
8. Fujimori, Y., Nakamura, T. and Takasu, H., Jpn. J. Appl. Phys. 38, 5346 (1999).Google Scholar
9. Song, Y. J., Zhu, Y. and Desu, S. B., Appl. Phys. Lett. 72, 2686 (1998).Google Scholar
10. Lakeman, C. D. E. and Payne, D. A., J. Am. Ceram. Soc. 75, 3091 (1992).Google Scholar
11. Mandeljc, M., Kosec, M., Malic, B. and Samardzija, Z., Integr. Ferroelectr. 30, 149 (2000).Google Scholar
12. Maki, K., Soyama, N., Mori, S. and Ogi, K., Integr. Ferroelectr. 30, 193 (2000).Google Scholar
13. Maki, K., Soyama, N., Nagamine, K., Mori, S. and Ogi, K., Jpn. J. Appl. Phys. 40, 5533 (2001).Google Scholar