Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-23T11:47:12.181Z Has data issue: false hasContentIssue false

Low-Energy Irradiation Damage in Single-Walled Carbon Nanotubes

Published online by Cambridge University Press:  01 February 2011

Satoru Suzuki
Affiliation:
[email protected], NTT Corp., NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan, 81 46 240 3632, 81 46 240 4711
Yoshihiro Kobayashi
Affiliation:
[email protected], NTT Corp., NTT Basic Research Laboratories, 3-1, Morinosato Wakamiya, Atsugi, 243-0198, Japan
Get access

Abstract

We show that low-energy (20 eV–20 keV) electron or photon irradiation extinguishes the characteristic physical and chemical properties of single-walled carbon nanotubes, indicating that the irradiation damages the nanotubes. The irradiation-induced defects convert the electric properties of metallic SWNTs to semiconducting, and the nominal bandgap can be tuned simply by the irradiation dose. The defects also have the following interesting properties. The damage and recovery are reversible, indicating that the number of carbon atoms is preserved. The damage and recovery strongly depend on the diameter, suggesting that the damage is prominent in a rolled up graphene sheet, but not in a planar one. The activation energy of the defect healing is so small, depending on the diameter, that the defects can be healed even at room temperature or below.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Suzuki, S., Kanzaki, K. Homma, Y. and Fukuba, S. Jpn. J. Appl. Phys. 43, L1118 (2004).Google Scholar
2. Lefebvre, J. Austing, D. G., Bond, J. Finnie, P. Nano Lett. 6, 1603 (2006).Google Scholar
3. Suzuki, S. Kobayashi, Y. Jpn. J. Appl. Phys. 44, L1498 (2005).Google Scholar
4. Suzuki, S. Yamamoto, H. Maeda, F. Watanabe, Y. Yamada, K. Kiyokura, T. J. Electron Spectrosc. Relat. Phenom. 144-147, 1109 (2005).Google Scholar
5. Chiashi, S. Murakami, Y. Miyauchi, Y. Maruyama, S. Therm. Sci. Eng. 13, 19 (2005).Google Scholar
6. Bachilo, S. M., Strano, M. S., Kittrell, C. Hauge, R. H., Smalley, R. E., Weisman, R. B., Science 298, 2361 (2002).Google Scholar
7. Suzuki, S. Takagi, D. Homma, Y. and Kobayashi, Y. Jpn. J. Appl. Phys. 44, L133 (2005).Google Scholar
8. Vijayaraghavan, A. Kanzaki, K. Suzuki, S. Kobayashi, Y. Inokawa, H. Ono, Y. Kar, S. Ajayan, P. M. Nano Lett. 5, 1575 (2005).Google Scholar
9. Kamimura, T. Yamamoto, K. and Matsumoto, K. Jpn. J. Appl. Phys. 43, 2271 (2004).Google Scholar
10. Kamimura, T. Maeda, M. Sakamoto, K. and Matsumoto, K. Jpn. J. Appl. Phys. 44, 461 (2005).Google Scholar
11. Gotoh, Y. Matsumoto, K. and Maeda, T. Jpn. J. Appl. Phys. 41, 2578 (2002).Google Scholar
12. Kanzaki, K. Suzuki, S. Inokawa, H. Ono, Y. Vijayaraghavan, A. and Kobayashi, Y. J. Appl. Phys. 101, 034317 (2007).Google Scholar
13. Suzuki, S. and Kobayashi, Y. Chem. Phys. Lett. 430, 370 (2006).Google Scholar
14. Stone, A. J. and Wales, D. J., Chem. Phys. Lett. 128, 501 (1986).Google Scholar
15. Suzuki, S. and Kobayashi, Y. J. Phys. Chem. C 111, 4524 (2007).Google Scholar