Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:56:52.630Z Has data issue: false hasContentIssue false

Low-Energy Ion Beam Synthesis as a New Route toward Plasmonic Nanostructures

Published online by Cambridge University Press:  31 January 2011

Robert Carles
Affiliation:
[email protected], CEMES, CNRS - Université Toulouse, Toulouse, France
Cosmin Farcau
Affiliation:
[email protected], CEMES, CNRS - Université Toulouse, Toulouse, France
Julien Campos
Affiliation:
[email protected], LAAS, CNRS - Université Toulouse, Toulouse, France
Caroline Bonafos
Affiliation:
[email protected], CEMES, CNRS - Université Toulouse, Toulouse, France
Gérard BenAssayag
Affiliation:
[email protected], CEMES, CNRS - Université Toulouse, Toulouse, France
Antoine Zwick
Affiliation:
[email protected], CEMES, CNRS - Université Toulouse, Toulouse, France
Get access

Abstract

Single δ-layers of dispersed silver (Ag) nanoparticles are obtained by low-energy ion beam implantation in a silica thin film. TEM microscopy reveals that the obtained Ag particles are spherical, crystalline, and the particles layer is located at only few nanometers below the free silica surface. We use reflectivity measurements to probe the optical/plasmonic response of the fabricated structures and exploit plasmon resonance and optical interference effects in the silica film to record the Raman scattering by quadrupolar vibrations of the spherical particles.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Sainidou, R., Abajo, F. J. Garcia de, Opt. Express 16, 4499 (2008).Google Scholar
2 Biswas, A., Eilers, H., Hidden, F., Aktas, O. C., Kiran, C. V. S., Appl. Phys. Lett. 88, 013103 (2006).Google Scholar
3 Murray, W. A., Barnes, W. L., Adv. Mater. 19, 3771 (2007).Google Scholar
4 Bonafos, C., Carrada, M., Cherkashin, N., Coffin, H., Chassaing, D., Assayag, G. Ben, Claverie, A., Müller, T., Heinig, K. H., Perego, M., Fanciulli, M., Dimitrakis, P., Normand, P., J. Appl. Phys. 95, 5696 (2004).Google Scholar
5 Lerme, J., Palpant, B., Prevel, B., Pellarin, M., Treilleux, M., Vialle, J. L., Perez, A., Broyer, M., Phys. Rev. Lett. 80, 5105 (1998).Google Scholar
6 Bacsa, W. S., Lannin, J. S., Appl. Phys. Lett. 61, 19 (1992).Google Scholar
7 Portales, H., Saviot, L., Duval, E., Fujii, M., Hayashi, S., Del, N. Fatti, Vallee, F., J. Chem. Phys. 115, 3444 (2001).Google Scholar