Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-28T14:47:44.906Z Has data issue: false hasContentIssue false

Low-Energy Implantation of Si and Sn into GaAs

Published online by Cambridge University Press:  25 February 2011

W.S. Rubart
Affiliation:
Dept. of Materials Science and Engineering, University of Florida, Gainesville, Florida 32608
K.S. Jones
Affiliation:
Dept. of Materials Science and Engineering, University of Florida, Gainesville, Florida 32608
L. Seiberling
Affiliation:
Dept. of Physics, University of Florida, Gainesville, Florida 32608
D.K. Sadana
Affiliation:
IBM, T.J Watson Research Center, Yorktown Heights, New York 10598
Get access

Abstract

(100) GaAs was implanted with 29Si+ at energies of 10keV or 20keV and 119Sn+ at an energy of 60keV. The doses used for the Si+ implants were from 1 × 1013 crrr2 to 1 × 1016 cm-2, whereas the Sn+ doses ranged from 1.5×1012 cm-2 to 1.5×1015 cm-2. Implanted samples were rapidly thermal annealed (RTA) in either an argon or arsine ambient at 950°C or 900°C for 12 seconds. Transmission electron microscopy (TEM) results indicate that the annealing ambient has a dramatic effect on the defect annealing kinetics for 10keV implants but not the 20keV Si+ implants. For the 10keV implants reducing arsenic loss via use of an arsine ambient or a Si3N4 cap results in a dramatic decrease in the dislocation loop density. The defect morphology is not related to the as implanted morphology (amorphous or crystalline) but is related to the species. Hall effect measurements revealed an increase in the mobility by a factor of 1.5 times for high dose Si+ and Sn+ implanted samples when RTA was carried out in an arsine instead of an argon ambient. This is despite little or no change in the extended defect morphology or carrier concentration, indicating that the point defect concentration influences the mobility.

Type
Research Article
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Williams, J.S., Poate, J.M., Ion implantation and beam processing, edited by Williams, J.S., Poate, J.M. (Academic Press, 1984) pp. 112.Google Scholar
2 Sealy, B.J., Mater. Sci. Tech. 4, 500 (1988).Google Scholar
3 Bhattacharya, R.S., Rai, A.K., Yeo, Y.K., Pronko, P.P., Ling, S.C., Wilson, S.R., Park, Y.S., J. Appl. Phys. 54, 2329(1983).Google Scholar
4 Pearton, S.J., Hull, R., Jacobson, D.C., J.M. Poate, Appl. Phys. Lett., 1, 38 (1986).Google Scholar
5 Kuzuhara, M., Kohzu, H., Appl. Phys. Lett., 44, 527 (1984).Google Scholar
6 Kozuhara, M., Kohzu, H., Tsuji, T., Higashisaka, A..in Semi-Insulating lll-IV Materials, edited by Look, D.C., Blakemore, J.S. (Shiva Publishing, 1984) pp. 45.Google Scholar
7 Lidow, A., Gibbons, J.F., Magee, T., Peng, J., J. Appl. Phys. 49, 5213 (1978).Google Scholar
8 Shahid, M.A., Bensalem, R., Sealy, B.J., Favennec, P.N., Gauneau, M., Nucl. Instrum. Meth. Phys. Res. B30, 531 (1988).Google Scholar
9 Shahid, M.A., Bensalem, R., Sealy, B.J., MRS Soc. Symp. Proc. 35, 489 (1985).Google Scholar
10 Patel, K.K., Bensalem, R., Shahid, M.A., Sealy, B.J., Nucl. Instrum. Meth. Phys. Res. B7/8. 418 (1985).Google Scholar
11 Sadana, D.K., (private communication).Google Scholar
12 Allen, E.L, Deal, M.D., Plummer, J.D., presented at the MRS Fall Meeting, Boston, MA, 1989 (unpublished).Google Scholar
13 Kang, C.H., Kondo, K., Lagowski, J., Gatos, H.C., J. Electrochem. Soc, 134,1261 (1987).Google Scholar
14 Vaidyanathan, K.V., Helix, M.J., Wolford, D.J., Streetman, B.G., Blattner, R.J., Evans, C.A. Jr., J. Electrochem. Soc, 124,1783 (1977).Google Scholar
15 Chan, Y.J., Lin, M.S., Chen, T.P., J. Appl. Phys., 58, 545 (1985).Google Scholar
16 Kuzuhara, M., Kohzu, H., Appl. Phys. Lett., 44, 527, (1984).Google Scholar
17 Feng, M., Kwok, S.P., Eu, V., Henderson, B.W.. J. Appl. Phys., 52, 2990 (1981).Google Scholar
18 Wilson, M.R., Kosel, P.B., Shen, Y.D., Welch, B.M., J. Electrochem. Soc, 134, 2560 (1983).Google Scholar
19 Bravman, J.C., Sinclair, R., J. Elec. Micros. Tech., 1, 53 (1984).Google Scholar
20 Jones, K.S., Prussian, S., Weber, E.R., Appl. Phys. A 45,1 (1988).Google Scholar
21 Cummings, K.D., Pearton, S.J., Vella-Colero, G.P., J. Appl. Phys., 60,163 (1986).Google Scholar