Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-09T22:12:17.634Z Has data issue: false hasContentIssue false

Low-Defect, High-Quality Simox Produced By Multiple Oxygen Implantation with Substoichiometric Total Dose*

Published online by Cambridge University Press:  25 February 2011

F. Namavar
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
E. Cortesi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
P. Sioshansi
Affiliation:
Spire Corporation, Patriots Park, Bedford, MA 01730
Get access

Abstract

This work addresses the formation of Separation by IMplantation of OXygen (SIMOX) structures by multiple oxygen implantation into silicon and high temperature annealing. We observed no threading dislocation defects in the several plane view TEM and XTEM micro graphs of each of the samples implanted with a single dose of up to 8 × 1017 0+/cm2. We also demonstrated that with a multiple low-dose (3 to 4 × 1017 0+/cm2) oxygen implantation and high temperature annealing process, we are able to produce continuous and uniform buried SiO2 layers with a total dose of 1.1 × 1018 0+/cm2 (about 60% of the total dose for standard SIMOX). The density of defects is about 105/cm2. There are no silicon islands in the buried layer, no SiO2 precipitates in the silicon top layer, and the Si-SiO2 interfaces are sharp and smooth. SIMOX material with a high-quality Si top layer and a continuous buried layer has been produced with a total dose of 7 × 1017 0+/cm2 (40% of the total dose for standard SIMOX) and a two-step process. However, in this case there are a few Si islands present in the buried SiO2 layer.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

*

This work was supported in part by the Department of Defense, Rome Air Development Center/ESR, under contract No. F19628-86-C-0069.

References

REFERENCES

1. Pinizzotto, R.F., Mat. Res. Soc. Symp. Proc. 27, 265 (1984).10.1557/PROC-27-265CrossRefGoogle Scholar
2. Tsaur, B.Y., Mat. Res. Soc. Symp. Proc. 35, 641 (1985).10.1557/PROC-35-641Google Scholar
3. Hemment, P.L.F., Mat. Res. Soc. Symp. Proc. 53 (1986).Google Scholar
4. Izumi, K., Nucl. Instr. and Meth. B 21, 124 (1987).CrossRefGoogle Scholar
5. Davis, J.R., Reeson, K.J., Hemment, P.L.F., and Marsh, C.D., IEEE Electron Dev. Lett. EDL–8 (7), 291 (1987).10.1109/EDL.1987.26635Google Scholar
6. Pinizzotto, R.F., Vaandrager, B.L., Matteson, S., Lam, H.W., Malhi, S.D.S., Hamdi, A.H., and McDaniel, F.D., IEEE Trans. Nucl. Sci. NS-30 (2), 1718 (1983).10.1109/TNS.1983.4332623CrossRefGoogle Scholar
7. Jaussaud, C., Margail, J., Stoemenos, J., and Bruel, M., Mat. Res. Soc. Symp. Proc. 100, 17 (1988).Google Scholar
8. Jaussaud, C., Stoemenos, J., Margail, J., DuPuy, M., Blanchard, B., and Bruel, M., Appl. Phys. Lett. 46 (11), 1064 (1985).10.1063/1.95761Google Scholar
9. Celler, G.K., Hemment, P.L.F., West, K.W., and Gibson, J.M., Appl. Phys. Lett. 48 (8) 532 (1986).10.1063/1.96497CrossRefGoogle Scholar
10. Mao, B.Y., Chang, P.H., Lam, H.W., Shen, B.W., and Keenan, J.A., Appl. Phys. Lett. 48 (12), 794 (1986).10.1063/1.96672Google Scholar
11. Namavar, F., unpublished data in several monthly reports to Rome Air Development Center, 1987, and to be published.Google Scholar
12. Homma, Y., et al., Japan, J. Appl. Phys. 21 (6), 890 (1982).10.1143/JJAP.21.890CrossRefGoogle Scholar
13. Hill, D., Fraundorf, P., and Fraundorf, G., J. Appl. Phys. 63, 4932 (1988).10.1063/1.340436CrossRefGoogle Scholar
14. Cheek, T.F. Jr, and Chen, D., Mat. Res. Soc. Symp. Proc. 107, 53 (1988).10.1557/PROC-107-53Google Scholar
15. Sioshansi, P. and Namavar, F., Mat. Res. Soc. Symp. Proc. 107, 67 (1988).10.1557/PROC-107-67Google Scholar