Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-27T01:45:32.734Z Has data issue: false hasContentIssue false

Low Temperature Poly-Si Layers Deposited by Hot Wire CVD Yielding a Mobility of 4.0 cm2V−1s−1 in Top Gate Thin Film Transistors

Published online by Cambridge University Press:  17 March 2011

R.E.I. Schropp
Affiliation:
Utrecht University, Debye Institute, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
J.K. Rath
Affiliation:
Utrecht University, Debye Institute, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
B. Stannowski
Affiliation:
Utrecht University, Debye Institute, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
C.H.M. Van Der Werf
Affiliation:
Utrecht University, Debye Institute, P.O.Box 80000, 3508 TA Utrecht, The Netherlands
Y. Chen
Affiliation:
Department of Electrical Engineering and Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, NJ 08544-5263, USA
S. Wagner
Affiliation:
Department of Electrical Engineering and Center for Photonics and Optoelectronic Materials, Princeton University, Princeton, NJ 08544-5263, USA
Get access

Abstract

Direct deposition of polycrystalline silicon (poly-Si) thin films by the Hot Wire CVD method has been used for the first time for the fabrication of poly-Si top gate Thin Film Transistors (TFTs). The TFTs have a high electron mobility in saturation of up to 4 cm2V−1s−1 as well as a remarkably large ON/OFF ratio of up to 6 × 105.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Boyce, J.B., Mei, P., Fulks, R.T., and Ho, J., Phys. Stat. Sol. A 166 (1998) 729.Google Scholar
[2] Mei, P., Boyce, J.B., Fork, D.K., Anderson, G., Ho, J., Lu, J., Hack, M., and Lujan, R., MRS Symp Proc. 507 (1998) 3.Google Scholar
[3] Theiss, S.D., Carey, P.G., Smith, P.M., Wickboldt, P., Sigmon, T.W., Tung, Y.J., and King, T.-J., IEDM 1998 Technical Digest (1998) 257.Google Scholar
[4] Mahan, A.H., Carapella, J., Nelson, B.P., Crandall, R.S., and Balberg, I., J. Appl. Phys. 69 (1991) 6728.Google Scholar
[5] Matsumura, H., Electrochemical Society Proceedings Volume 98–22 (1999) 280.Google Scholar
[6] Schropp, R.E.I. and Rath, J.K., IEEE Trans. Electron Dev. 46 (1999) 2069.Google Scholar
[7] Hornsey, R.I., Mahnke, T., Madeira, P., Aflatooni, K., and Nathan, A., Materials Research Society Symp. Proc. 467 (1997) 887.Google Scholar
[8] Feenstra, K.F., Schropp, R.E.I. and Weg, W.F. van der, J. Appl. Phys. 85 (1999) 6843.Google Scholar
[9] Cabarrocas, P. Roca i, Brenot, R., Bulkin, P., Vanderhaghen, F., and Drévillon, B., J. Appl. Phys. 86 (1999) 7079.Google Scholar
[10] Mulato, M., Chen, Y., Wagner, S., and Zanatta, A.R., J. Non-Cryst. Solids (2000), to be published.Google Scholar
[11] Schropp, R.E.I. and Zeman, M., Amorphous and Microcrystalline Solar Cells: Modeling, Materials and Device Technology, Kluwer Academic Publishers, ISBN 0-7923-8317-6 (Boston/Dordrecht/London, 1998).Google Scholar
[12] Rath, J.K., Meiling, H. and Schropp, R.E.I., Jpn. J. Appl. Phys. 36 (1997) 5436.Google Scholar
[13] Stannowski, B., Meiling, H., Brockhoff, A., and Schropp, R.E.I., MRS Symp. Proc. 557 (1999) 659.Google Scholar
[14] Rath, J.K., Tichelaar, F.D., Meiling, H. and Schropp, R.E.I., MRS Symp. Proc. 507 (1998) 879.Google Scholar
[15] Chen, Y. and Wagner, S., MRS Symp. Proc. 557 (1999) 665.Google Scholar