Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-27T02:19:37.110Z Has data issue: false hasContentIssue false

Low Temperature Growth of GaAs and AlGaAs by Mombe

Published online by Cambridge University Press:  26 February 2011

C. R. Abernathy
Affiliation:
AT&T Bell Laboratories, Murray Hill, NJ
D. A. Bohling
Affiliation:
Air Products and Chemicals, Inc., Allentown, P A.
A. C. Jones
Affiliation:
Epichem Limited, Wirral, Merseyside, U. K.
Get access

Abstract

We have examined various methods of overcoming the problems of low growth efficiency and high carbon uptake which occur when GaAs is grown at low temperatures by Metal Organic Molecular Beam Epitaxy (MOMBE). We have found that removal of the carbon through conventional means such as precracking or interaction with hydrogen is not effective in enhancing the carbon removal process. In fact, the use of a hydrogen plasma during growth actually increases the carbon background due to a reduction in the surface V/III ratio. Greater success is obtained when alternative precursors are used as replacements for AsH3 and triethylgallium (TEG). Tris-dimethylaminoarsenic (DMAAs) offers reduced carbon uptake through formation of amine compounds while tri-isobutylgallium (TTBG) shows better efficiency and less carbon than TEG at low growth temperature.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See for example: Kaminska, M. and Weber, E., Proc. of the 16th Inter. Conf. on Def. in Semi, Lehigh Univ., 1991.Google Scholar
2. Chiu, T. H., Tsang, W. T., Cunningham, J. E., and Robertson, A. Jr, J. Appl. Phys. 62 (1987) 2302.Google Scholar
3. Kobayashi, N., Benchimol, J. L., Alexandre, F., and Gao, Y., Appl. Phys. Lett. 51 (1987) 1907.Google Scholar
4. Uneta, M., Watanabe, Y. and Ohmachi, Y., J. Crystal Growth 110 (1991) 576.Google Scholar
5. Benchimol, J. L., Alexandre, F., Gao, Y., and Alaoui, F., J. Crystal Growth 95 (1989) 150.Google Scholar
6. Houng, Y. M., Second Int. Conf. on CBE, Houson, TX, Dec. 1989.Google Scholar
7. Abernathy, C. R., Pearton, S. J., Baiocchi, F. A., Ambrose, T., Jordan, A. S., Bohling, D. A., and Muhr, G. T., J. Crystal Growth 110 (1991) 457.CrossRefGoogle Scholar
8. Robertson, A. Jr, Chiu, T. H., Tsang, W. T., and Cunningham, J. E., J. Appl. Phys. 64 (1988)877.Google Scholar
9. Martin, T. and Whitehouse, C. R., J. Crystal Growth 105 (1990) 57.Google Scholar
10. Kondo, N. and Nanishi, Y., Jpn. J. Appl. Phys. 28 (1989) L7.Google Scholar
11. Lu, Z., Schmidt, T., Chen, D., Osgood, R. M. Jr, Holber, W. M., Podlesnik, D. V. and Forster, J., Appl. Phys. Lett. 58 (1991) 1143.Google Scholar
12. Tanaka, Y., Kunitsugu, Y., Suemune, I., Honda, Y., Kan, Y., and Yamanishi, M., J. Appl. Phys. 64 (1988) 2778.Google Scholar
13. Nagata, K., Iimura, Y., Aoyagi, Y., Namba, S., Den, S., and Montani, A., J. Crystal Growth 93 (1988) 265.Google Scholar
14. Mödritzer, K., Chem. Ber 92 (1959) 2637.Google Scholar
15. Zimmer, M. H., Hovel, R., Brusch, W., Brauers, A., and Balk, P., J. Crystal Growth 707 (1991) 348.Google Scholar
16. Abernathy, C. R., Wisk, P. W., Bohling, D. A., and Muhr, G. T., submitted to Appl. Phys. Lett.Google Scholar
17. Alfa OrganometallicsGoogle Scholar
18. Shriver, D. F. and Parry, R. W., Inorg. Chem. 2 (1963) 1039.Google Scholar
19. Whitehouse, C., Martin, T. and Lane, P. A. (RSRE, Malvem, U.K.) personal communication.Google Scholar
20. Plass, C., Heinecke, H., Kayser, O., Lüth, H. and Balk, P., J. Crystal Growth 88 (1988) 455.Google Scholar
21. Bohling, D. A., Muhr, G. T., Abernathy, C. R., Jordan, A. S., Pearton, S. J., and Hobson, W. S., J. Crystal Growth 107 (1991) 1068.Google Scholar
22. Grady, A. S., Linney, R. E., Markwell, R. D., Mills, G. P., Russell, D. K., Williams, P. J., and Jones, A. C., J. Mater. Chem. in press.Google Scholar