No CrossRef data available.
Article contents
Low temperature CVD growth of graphene nano-flakes directly on high K dielectrics
Published online by Cambridge University Press: 02 March 2011
Abstract
The potential of MgO and ZrO2 as catalytically active substrates for graphene formation via thermal CVD is explored. Experimental observations show the growth of single and multi-layer graphene nano-flakes over MgO and ZrO2 at low temperatures. The graphene nano-flakes are found to anchor at step sites. Ab initio calculations indicate step sites are crucial to adsorb and crack acetylene.
- Type
- Research Article
- Information
- MRS Online Proceedings Library (OPL) , Volume 1284: Symposium C – Fundamentals of Low-Dimensional Carbon Nanomaterials , 2011 , mrsf10-1284-c02-02
- Copyright
- Copyright © Materials Research Society 2011
References
REFERENCES
1.
Novoselov, K. S., Geim, A. K., Morozov, S. V., Jiang, D., Zhang, Y., Dubunos, S. V., Grigoriava, I. V. and Firsov, A. A., Science
306, 666 (2004).Google Scholar
3.
Stanley, M., Wang, H., Puls, C., Forster, J., Jackson, T. N., McCarthy, K., Clouser, B. and Liu, Y., Applied Physics Letters
90, 143518 (2007).Google Scholar
5.
Elias, D. C., Nair, R. R., Mohiuddin, T. M. G., Morozov, S. V., Blake, P., Halsall, M. P., Ferrari, A. C., Boukhvalov, D. W., Katsnelson, M. I., Geim, A. K. and Novoselov, K. S., Science
323, 610 (2009).Google Scholar
6.
Sofo, J. O., Chaudhari, A. S. and Barber, G. D., Physical Review B
75, 153401 (2007).Google Scholar
7.
Lemme, M. C., Echtermeyer, T. J., Baus, M. and Kurz, H., IEEE Electron Device Letters
28, 282 (2007).Google Scholar
8.
Perdew, J. P., Burke, K. and Ernzerhof, M., Physical Review Letters
77, 3865 (1996).Google Scholar
11.
Henkelman, G., Arnaldsson, A. and Jonsson, H., Computational Materials Science
36, 354 (2006).Google Scholar
13.
Rümmeli, M. H., Kramberger, C., Grüneis, A., Ayala, P., Gemming, T., Büchner, B. and Pichler, T., Chemistry of Materials
19, 4105 (2007).Google Scholar
14.
Rümmeli, M. H., Bachmatiuk, A., Scott, A., Börrnert, F., Warner, J. H., Hoffmann, V., Lin, J. H., Cuniberti, G. and Büchner, B., ACS Nano
4, 4206 (2010).Google Scholar
16.
Rümmeli, M. H., Schäffel, F., Kramberger, C., Gemming, T., Bachmatiuk, A., Kalenczuk, R. J., Rellinghaus, B., Büchner, B. and Pichler, T., Journal of the American Chemical Society
129, 15772 (2007).Google Scholar
17.
Rümmeli, M. H., Schäffel, F., Bachmatiuk, A., Adebimpe, D., Trotter, G., Börrnert, F., Scott, A., Coric, E., Sparing, M., Rellinghaus, B., McCormick, P. G., Cuniberti, G., Knupfer, M., Schultz, L. and Büchner, B., ACS Nano
4, 1146 (2010).10.1021/nn9016108Google Scholar
18.
Steiner, S. A. III, Baumann, T. F., Bayer, B. C., Blume, R., Worsley, M. A., MoberlyChan, W. J., Shaw, E. L., Schlögl, R., Hart, A. J., Hofmann, S. and Wardle, B. L., Journal of the American Chemical Society
131, 12144 (2009).Google Scholar
19.
Emtsev, K. V., Bostwick, A., Horn, K., Jobst, J., Kellogg, G. L., Ley, L., McChesney, J. L., Ohta, T., Reshanov, S. A., Röhrl, J., Rotenberg, E., Schmid, A. K., Waldmann, D., Weber, H. B. and Seyller, T., Nature Materials
8, 203 (2009).Google Scholar
20.
Hofmann, S., Csányi, G., Ferrari, A. C., Payne, M. C. and Robertson, J., Physical Review Letters
95, 036101–1 (2005).Google Scholar
21.
Helveg, S., Clopez-Cartes, , Sehested, J., Hansen, P. L., Clausen, B. S., Rostrup-Nielsen, J. R., Abild-Pedersen, F., and Nørskov, J. K., Nature (London)
427, 426 (2004).Google Scholar
22.
Scott, A., Dianat, A., Börrnert, F., Bachmatiuk, A., Zhang, S., Warner, J. H., Borowiak-Palen, E., Knupfer, M., Büchner, B., Cuniberti, G. and Rümmeli, M. H., Applied Physics Letters. submitted.Google Scholar