Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-25T15:12:36.887Z Has data issue: false hasContentIssue false

Low Temperature Chemical Vapor Deposition of Titanium Dioxide Thin Films Using Tetranitratotitanium (IV)

Published online by Cambridge University Press:  10 February 2011

D. C. Gilmer
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
W. L. Gladfelter
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
D. G. Colombo
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
C. J. Taylor
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
J. Roberts
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
S. A. Campbell
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
H.-S. Kim
Affiliation:
Department of Electrical Engineering, University of Minnesota, Minneapolis, MN 55455
G. D. Wilk
Affiliation:
Department of Chemistry, University of Minnesota, Minneapolis, MN 55455
M. A. Gribelyuk
Affiliation:
Texas Instruments, 13588 N. Central Expressway, Dallas, TX 75243
Get access

Abstract

Crystalline titanium dioxide films were deposited on silicon (100) at temperatures as low as 184°C using the volatile molecular precursor, tetranitratotitanium(IV). Deposition rates in a low pressure chemical vapor deposition (LPCVD) reactor operated at 230 – 500°C with a precursor vessel temperature at 22°C were typically 4 nm/min. The effect of deposition temperature and annealing conditions on morphology are shown. Following post-deposition annealing in oxygen and hydrogen, Pt/TiO2/Si/Al capacitors were fabricated and exhibited dielectric constants in the range of 19 – 30 and leakage current densities as low as 10−8 Amp/cm2.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Brar, B., Wilk, G. D. and Seabaugh, A. C., Appl. Phys. Lett. 69, 2728 (1996).Google Scholar
[2] Kim, S.-O. and Kim, H. J., J. Vac. Sci. Technol. B 12, 3006 (1994).Google Scholar
[3] Campbell, S. A., Gilmer, D. C, Wang, X.-C., Hsieh, M.-T., Kim, H.-S., Gladfelter, W. L. and Yan, J., IEEE Trans. Electron Devices 44, 104 (1997).Google Scholar
[4] Kim, H.-S., Gilmer, D. C, Campbell, S. A. and Polla, D. L., Appl. Phys. Lett. 69, 3860 (1996).Google Scholar
[5] Yan, J., Gilmer, D. C, Campbell, S. A., Gladfelter, W. L. and Schmid, P. G., J. Vac. Sci. Technol. B 14, 1706(1996).Google Scholar
[6] Hass, G., Vacuum 2, 331 (1952).Google Scholar
[7] Feuersanger, A. E., Proc. IEEE 52, 1463 (1964).Google Scholar
[8] Ghoshtagore, R. N. and Norieka, A. J., J. Electrochem. Soc. 117, 1310 (1970).Google Scholar
[9] Ghoshtagore, R. N., J. Electrochem. Soc. 117, 529 (1970).Google Scholar
[10] Fitzgibbons, E. T., Sladek, K. J. and Hartwig, W. H., J. Electrochem. Soc. 119, 735 (1972).Google Scholar
[11] Balog, M., Schieber, M., Patai, S. and Michman, M., J. Crystal Growth 17, 298 (1972).Google Scholar
[12] Takahashi, Y., Tsuda, K., Sugiyama, K., Minoura, H., Makino, D. and Tsuiki, M., J. Chem. Soc., Faraday Trans. 1 77, 1051 (1981).Google Scholar
[13] Fuyuki, T. and Matsunami, H., Jpn. J. Appl. Phys. 25, 1288 (1986).Google Scholar
[14] Fuyuki, T., Kobayashi, T. and Matsnami, H., J. Electrochem. Soc. 135, 248 (1988).Google Scholar
[15] Siefering, K. L. and Griffin, G. L., J. Electrochem. Soc 137, 814 (1990).Google Scholar
[16] Siefering, K. L. and Griffin, G. L., J. Electrochem. Soc. 137, 1206 (1990).Google Scholar
[17] Kamata, K., Maruyama, K., Amano, S. and Fukazawa, H., J. Mater. Sci. Lett. 9, 316 (1990).Google Scholar
[18] Lu, J. and Raj, R., J. Mater. Res. 6, 1913 (1991).Google Scholar
[19] Chang, H. L. M., You, H., Guo, J. and Lam, D. J., Appl. Surf. Sci. 48/49, 12 (1991).Google Scholar
[20] Lakomaa, E.-L., Haukka, S. and Suntola, T., Appl. Surf. Sci 60/61, 742 (1992).Google Scholar
[21] Won, T., Yoon, S. and Kim, H., J. Electrochem. Soc. 139, 3284 (1992).Google Scholar
[22] Chang, H. L. M., You, H., Gao, Y., Guo, J., Foster, C. M., Chiarello, R. P., Zhang, T. J. and Lam, D. J., J. Mater. Res. 7, 2495 (1992).Google Scholar
[23] Ritala, M., Leskelä, M., Niinistö, L. and Haussalo, P., Chem. Mater. 5, 1174 (1993).Google Scholar
[24] Wu, Y., Bradley, D. C. and Nix, R. M., Appl. Surf. Sci. 64, 21 (1993).Google Scholar
[25] Ritala, M., Leskelä, M., Nykänen, E., Soininen, P. and Niinistö, L., Thin Solid films 225, 288 (1993).Google Scholar
[26] Rausch, N. and Burte, E. P., J. Electrochem. Soc. 140, 145 (1993).Google Scholar
[27] Chen, S., Masen, M. G., Gysling, H. J., Paz-Pujalt, G. R., Blanton, T. N., Castro, T., Chen, K. M., Fictorie, C. P., Gladfelter, W. L., Franciosi, A., Cohen, P. I. and Evans, I. F., J. Vac. Sci. Technol. A 11, 2419 (1993).Google Scholar
[28] Chang, H. L. M., Zhang, T. J., Zhang, H., Guo, J., Kim, H. K. and Lam, D. J., J. Mater. Res. 8, 2634(1993).Google Scholar
[29] Yoon, Y. S., Kang, W. N., Yom, S. S., Kim, T. W., Jung, M., Park, T. H., Seo, K. Y. and Lee, J. Y., Thin Solid films 238, 12 (1994).Google Scholar
[30] Kim, T. W., Jung, M., Kim, H. J., Park, T. H., Yoon, Y. S., Kang, W. N., Yom, S. S. and Na, H. K., Appl. Phys. Lett. 64, 1407 (1994).Google Scholar
[31] Fictore, C. P., Evans, J. F. and Gladfelter, W. L., J. Vac. Sci. Technol. A 12, 1108 (1994).Google Scholar
[32] Aarik, J., Aidla, A., Uustare, T. and Sammelselg, V., J. Crystal Growth 148, 268 (1995).Google Scholar
[33] Versteeg, V. A., Avedisian, T. C. and Raj, R., J. Am. Ceram. Soc. 78, 2763 (1995).Google Scholar
[34] Schmeisser, M., Angew. Chem. 67, 493 (1955).Google Scholar
[35] Addison, C. C., Chem. Rev. 80, 21 (1980).Google Scholar
[36] Field, B. O. and Hardy, C. J., J. Chem. Soc. 5278 (1963).Google Scholar
[37] Garner, C. D. and Wallwork, S. C., J. Chem. Soc. (A) 1496 (1966).Google Scholar