Published online by Cambridge University Press: 26 February 2011
During the past ten years extensive data have been determined for the corrosion of nuclear waste forms in short-term laboratory experiments (usually less than one year). The long-term behavior of glass has been inferred by: (1) the acceleration of corrosion rates at high temperatures [1]; (2) the use of high surface areas of the glass to small volumes of solution [1]; and the analysis of natural glasses altered over long periods of geologic time [2, 3]. The most recent efforts have concentrated on understanding the mechanisms of corrosion [1, 4, 5]. The corrosion mechanism may be used to make long-term extrapolations of the “stability” of the waste form. In this paper, we consider a linear time dependence for the corrosion under near saturation conditions and use a rate equation in the QTERM code [6, 7, 8] to model the long-term behavior of the German glass, C-31−3EC [9], JSS A [10, 11] and SRL TDS 131 [1]. The data base for C-31−3EC has been published elsewhere [9, 12, 13, 14], and we include experimental work completed by Rabe for boron and silica, at 200°C.