Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-06T06:54:09.244Z Has data issue: false hasContentIssue false

Long Distance Fracture Surface Roughness on a Dendritic Aluminum Alloy

Published online by Cambridge University Press:  15 February 2011

J. Aldaco
Affiliation:
Universidad Autónoma de Nuevo León, A.P. 149-F, S. Nicolás de los Garza, 66451, México
F.J. Garza
Affiliation:
Universidad Autónoma de Nuevo León, A.P. 149-F, S. Nicolás de los Garza, 66451, México
M. Hinojosa
Affiliation:
Universidad Autónoma de Nuevo León, A.P. 149-F, S. Nicolás de los Garza, 66451México. [email protected]
Get access

Abstract

The long distance roughness of the fracture surface of a dendritic aluminum alloy is studied over a wide range of length scales. Self-affinity analysis was performed over samples broken in Charpy impact tests. Simultaneous use of Atomic Force Microscopy, SEM and stylus profilometry allowed us to cover a wide spectrum of length scales, spanning over seven decades, from a few nanometers up to one centimeter. The roughness exponent and correlation length were obtained using the variable bandwidth method. For the roughness exponent, a value of 0.8 was obtained, corresponding to the reported universal exponent. Correlation length was found to correspond well to the characteristic length of the largest heterogeneities in the complex microstructure. Our results provide information that can help to improve our understanding of the role of microstructural parameters on crack propagation mechanisms.

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mandelbrot, B.B., Passoja, D.E. and Paullay, A.J., “Fractal Character of Fracture Surfaces of Metals”, Nature, 308, pp 721722 (1984).Google Scholar
2. Schmittbuhl, J., Vilotte, J.P.. Roux, S., “Reliability of self-affine measurements”, Phys. Rev. E, 51 131 (1995).Google Scholar
3. See the review article “Scaling Properties of Cracks”, Bouchaud, E., J. Phys.:Condens. Matter 9 (1997) 43194344 and the abundant references therein.Google Scholar
4. Bouchaud, E., Lapasset, G. and Planes, J., Europhys Lett., 13, pp 73 (1990).Google Scholar
5. Daguier, P., Nghiem, B., Bouchaud, E. and Creuzet, F., “Pinning and Depinning of Crack Fronts in Heterogeneous Materials”, Phys. Rev Lett., 78, pp 1062 (1997).Google Scholar
6. Daguier, P., Hdnaux, S., Bouchaud, E., and Creuzet, F., “Quantitative Analysis of a Fracture Surface by Atomic Force Microscopy”, Phys. Rev. E, 53, 5637 (1996).Google Scholar
7. Daguier, P., thesis, Ph. D., Université Paris 6 (in french), November 1997.Google Scholar
8. Hinojosa, M., Bouchaud, E. and Nghiem, B.. Materials Research Society Symposium Proceedings, Volume 539, Materials Research Society, Warrendale Pennsylvania, pp. 203208, 1999.Google Scholar
9. Reyes, Edgar, Master Thesis, University of Nuevo Leon, Mexico (in spanish). 1999.Google Scholar