Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-29T15:21:27.127Z Has data issue: false hasContentIssue false

Localized Surface Plasmon Resonance Biosensor Using Ag Nanostructured Films Fabricated by a Reduction Method

Published online by Cambridge University Press:  01 February 2011

Tomofumi Arai
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Center for Applied Near Field Optics Research (CAN-FOR), 1-1-1 Higashi, Tsukuba, N/A, 305-8562, Japan, +81-29-861-2911, +81-29-861-2939
Penmetcha K. R. Kumar
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Functional Nucleic Acids Group, Institute for Biological Resources and Functions, 1-1-1 Higashi, Tsukuba, N/A, 305-8562, Japan
Koichi Awazu
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Center for Applied Near Field Optics Research (CAN-FOR), 1-1-1 Higashi, Tsukuba, N/A, 305-8562, Japan
Junji Tominaga
Affiliation:
[email protected], National Institute of Advanced Industrial Science and Technology (AIST), Center for Applied Near Field Optics Research (CAN-FOR), 1-1-1 Higashi, Tsukuba, N/A, 305-8562, Japan
Get access

Abstract

In this paper, an optical biosensor based on the localized surface plasmon resonance (LSPR) of Ag nanostructured films is proposed and demonstrated. The Ag nanostructured films, which are fabricated by the reduction of AgOx thin films, exhibit a strong LSPR at wavelengths around 370 nm in an air environment. The reflectance spectra of the Ag nanostructured film represent that the shift in the LSPR wavelength follows a linear dependence on the refractive index of the surrounding medium. By varying the concentration of streptavidin solution, we demonstrate that the Ag nanostructured films functionalized with thiol and biotin molecules can sensitively detect a binding event between biotin and streptavidin molecules.

Type
Research Article
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Englebienne, P., Analyst 123, 1599 (1998).Google Scholar
2 Storhoff, J. J., Elghanian, R., Mucic, R. C., Mirkin, C. A., and Letsinger, R. L., J. Am. Chem. Soc. 120, 1959 (1998).Google Scholar
3 Henglein, A. and Meisel, D., J. Phys. Chem. B 102, 8364 (1998).Google Scholar
4 Yguerabide, J. and Yguerabide, E. E., Anal. Biochem. 262, 137 (1998); Anal. Biochem. 262, 157 (1998).Google Scholar
5 Jensen, T. R., Duval, M. L., Kelly, K. L., Lazarides, A. A., Schatz, G. C., and Duyne, R. P. Van, J. Phys. Chem. B 103, 9846 (1999).Google Scholar
6 Taton, T. A., Mirkin, C. A., and Letsinger, R. L., Science 289, 1757 (2000).Google Scholar
7 Schultz, S., Smith, D. R., Mock, J. J., and Schultz, D. A., Proc. Natl. Acad. Sci. U.S.A. 97, 996 (2000).Google Scholar
8 Okamoto, T., Yamaguchi, I., and Kobayashi, T., Opt. Lett. 25, 372 (2000).Google Scholar
9 Himmelhaus, M. and Takei, H., Sens. Actuators B 63, 24 (2000).Google Scholar
10 Malinsky, M. D., Kelly, K. L., Schatz, G. C., and Duyne, R. P. Van, J. Am. Chem. Soc. 123, 1471 (2001).Google Scholar
11 Nath, N. and Chilkoti, A., Anal. Chem. 74, 504 (2002).Google Scholar
12 Bao, P., Frutos, A. G., Greef, C., Lahiri, J., Muller, U., Peterson, T. C., Warden, L., and Xie, X., Anal. Chem. 74, 1792 (2002).Google Scholar
13 Hirsch, L. R., Jackson, J. B., Lee, A., Halas, N. J., and West, J. L., Anal. Chem. 75, 2377 (2003).Google Scholar
14 Raschke, G., Kowarik, S., Franzl, T., Sönnichsen, C., Klar, T. A., Feldmann, J., Nichtl, A., and Kürzinger, K., Nano Lett. 3, 935 (2003).Google Scholar
15 Cheng, S.-F. and Chau, L.-K., Anal. Chem. 75, 16 (2003).Google Scholar
16 Aizpurua, J., Hanarp, P., Sutherland, D. S., Käll, M., Bryant, G. W., and Abajo, F. J. G. de, Phys. Rev. Lett. 90, 057401 (2003).Google Scholar
17 Mitsui, K., Handa, Y., and Kajikawa, K., Appl. Phys. Lett. 85, 4231 (2004).Google Scholar
18 Hanes, A. J., Hall, W. P., Chang, L., Klein, W. L., and Duyne, R. P. Van, Nano Lett. 4, 1029 (2004).Google Scholar
19 Haes, A. J., Chang, L., Klein, W. L., and Duyne, R. P. Van, J. Am. Chem. Soc. 127, 2264 (2005).Google Scholar
20 Kreibig, U. and Vollmer, M., Optical Properties of Metal Clusters (Springer-Verlag, Berlin, 1995).Google Scholar
21 Tominaga, J., J. Phys.: Condens. Matter 15, R1101 (2003).Google Scholar
22 Arai, T., Rockstuhl, C., Fons, P., Kurihara, K., Nakano, T., Awazu, K., and Tominaga, J., Nanotechnology 17, 79 (2006).Google Scholar
23 Arai, T., Kurihara, K., Nakano, T., and Tominaga, J., Appl. Phys. Lett. 88, 051104 (2006).Google Scholar
24 Herne, T. M. and Tarlov, M. J., J. Am. Chem. Soc. 119, 8916 (1997).Google Scholar