Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-23T18:12:03.095Z Has data issue: false hasContentIssue false

Localized Ferromagnetic Resonance Force Microscopy of a Continuous Permalloy-Cobalt Film

Published online by Cambridge University Press:  01 February 2011

Evgueni Nazaretski
Affiliation:
[email protected], Los Alamos National Laboratory, MPA, MPA-10, MS K764, Los Alamos, NM, 87545, United States, 5056656550
Denis V. Pelekhov
Affiliation:
[email protected], Ohio State University, Columbus, OH, 43210, United States
Ivar Martin
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
Kitty C. Cha
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
Elshan A. Akhadov
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
P. Chris Hammel
Affiliation:
[email protected], Ohio State University, Columbus, OH, 43210, United States
Roman Movshovich
Affiliation:
[email protected], Los Alamos National Laboratory, Los Alamos, NM, 87545, United States
Get access

Abstract

We report on the Magnetic Resonance Force Microscopy (MRFM) experiments performed on a 50 nm thick permalloy and a combined 20 nm thick permalloy – cobalt film. We studied the evolution of the MRFM spectra as a function of the vertical probe-sample distance and the lateral position as probe was scanned across the permalloy/cobalt interface. Our numerical simulations of the ferromagnetic resonance (FMR) modes excited in the presence of a non-uniform tip field of the cantilever compare well with experimental findings. This work demonstrates the capability of MRFM to perform local FMR spectroscopy of different materials in continuous ferromagnetic films.

Type
Research Article
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Rugar, D. et al. , Science 264, 1560 (1994)Google Scholar
2. Rugar, D., Budakian, R., Mamin, H. J., and Chui, W., Nature 430, 329 (2004)Google Scholar
3. Zhang, Z., Hammel, P. C., and Wigen, P. E., Appl. Phys. Lett. 68, 2005 (1996)Google Scholar
4. Zuger, O., and Rugar, D., Appl. Phys. Lett. 63, 2496 (1993)Google Scholar
5. Mamin, H. J., Poggio, M., Degen, C. L., and Rugar, D., Nature Nanotech., 2, 301 (2007)Google Scholar
6. Meckenstock, R. et al. , Appl. Phys. Lett., 91, 142507 (2007)Google Scholar
7. Sidles, J. A., Appl. Phys. Lett., 58, 2854 (1991)Google Scholar
8. Nazaretski, E. et al. , J. Appl. Phys., 101, 074905 (2007)Google Scholar
9. Dorofeyev, I., Fuchs, H., Wenning, G., and Gotsmann, B., Phys. Rev. Lett., 83, 2402 (1999)Google Scholar
10. Nazaretski, E. et al. , AIP Conf. Proc. 850, 1641 (2006)Google Scholar
11. Mewes, T. et al. , Phys. Rev. B 74, 144424 (2006)Google Scholar
12. Pelekhov, D. V. et al. , to be publishedGoogle Scholar
13. Nazaretski, E. et al. , Appl. Phys. Lett. 90, 234105 (2007)Google Scholar