Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-27T02:01:53.195Z Has data issue: false hasContentIssue false

Local Stress-strain Structure in CVD Diamond Observed by Raman Peak-shift Mapping

Published online by Cambridge University Press:  02 March 2011

Yukako Kato
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
Hitoshi Umezawa
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
Tokuyuki Teraji
Affiliation:
National Institute for Material Science, Tsukuba 305-0047, Japan
Shin-ichi Shikata
Affiliation:
Diamond Research Laboratory, Advanced Industrial Science and Technology, Tsukuba 305-8568, Japan
Get access

Abstract

Semiconductor epitaxial CVD single crystal diamond is considered a potential material for power devices because of its unique characteristics. In the discussion on the relationship between crystal quality and device performance, the atomic purity and defect concentration have been considered; however, the information on the local stress-strain distribution in a single crystal is not sufficient. In this paper, the local stress-strain distribution of the epitaxial CVD single crystal diamond is quantitatively examined using the birefringence and cathodoluminescence images and the Raman peak-shift map. From the Raman peak-shift map, the local stress-strain is estimated and the stress is found to range from -67 MPa to +160 MPa in the observed area.

Type
Research Article
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Ikeda, K., Umezawa, H. and Shikata, S., Diamond Relat. Mater. 17, 4-5 (2008) pp. 809812 Google Scholar
2. Umezawa, H., Ikeda, K., Kumaresan, R. and Shikata, S., Mater. Sci. Forum 645-648, (2010) pp. 12311234 10.4028/www.scientific.net/MSF.645-648.1231Google Scholar
3. Kodama, K., Funaki, T., Umezawa, H. and Shikata, S., IEICE Electronics Express 7, 17 (2010) pp. 12461251 Google Scholar
4. Tatsumi, N., Ikeda, K., Umezawa, H. and Shikata, S., SEI Technical review 68, (2009) pp. 5461 Google Scholar
5. Okushi, H., Diamond Relat. Mater. 10, 3-7 (2001) pp. 281288 Google Scholar
6. Bergonzo, P., Tromson, D., Descamps, C., Hamrita, H., Mer, C., Tranchant, N. and Nesladek, M., Diamond Relat. Mater. 16, 4-7 (2007) pp. 10381043 Google Scholar
7. Chen, K. H., Lai, Y. L., Lin, J. C., Song, K. J., Chen, L. C. and Huang, C.Y., Diamond Relat. Mater. 4 (1995) pp. 460463 10.1016/0925-9635(94)05319-7Google Scholar
8. Habka, N., Barjon, J., Lazea, A., and Haenen, K.., J. Appl. Phys. 107, 103531 (2010)Google Scholar
9. Read, W. T.: “Dislocations in Crystal” (McGraw-Hill Book Co., Inc., 1953)Google Scholar
10. Pinto, H. and Jones, R., J. Phys.: Condens. Matter 21, 36, 364220 (2009)Google Scholar
11. Ming, N.–B. and Ge, C.–Z., J. Cryst. Growth 99, (1990) pp. 13091314 Google Scholar
12. Dean, P. J., Phys. Rev. 139, A588A602 (1965)Google Scholar
13. Kanaya, K. and Okayama, S., J. Phys. D: Appl. Phys. 5 (1972), pp.4358 Google Scholar
14. Gheeraert, E., Deneuville, A., Bonnot, A.M., Abello, L., Diamond Relat. Mater. 1, 5-6 (1992), pp.525528 Google Scholar