Published online by Cambridge University Press: 17 March 2011
The local potential at domains on ferroelectric surfaces results from the interplay between atomic polarization and screening charge. The presence of mobile charge affects surface domain configuration, switching behavior, and surface chemical reactions. By measuring the temperature and time dependence of surface potential and piezo response with scanning probe microscopies, thermodynamic parameters associated with charge screening are determined. This is illustrated for the case of BaTiO3 (100) in air, for which the charge compensation mechanism is surface adsorption and enthalpy and entropy of adsorption are determined. The local electrostatic fields in the vicinity of the domains have a dominant effect on chemical reactivity. Photoreduction of a large variety of metals can be localized to domains with the appropriate surface charge. It has been demonstrated that proximal probe tips can be used to switch polarization direction locally. Combining the ability to ‘write’ domains of local polarization with domain specific reactivity of metals, vapors of small molecules, and organic compounds leads to a new approach to fabricating complex nanostructures.