Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T15:25:05.610Z Has data issue: false hasContentIssue false

Local Interface Composition and Band Offset Tuning in ZnSe-GaAs(001) Heterostructures

Published online by Cambridge University Press:  21 February 2011

R. Nicolini
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy.
L. Vanzetti
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy.
Guido Mula
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy. Dipartimento di Science Fisiche dell'Universita' di Cagliari, Via Ospedale 72,1-09124 Cagliari, Italy.
G. Bratina
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
L. Sorba
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy.
A. Mura
Affiliation:
Dipartimento di Science Fisiche dell'Universita' di Cagliari, Via Ospedale 72,1-09124 Cagliari, Italy.
J.E. Angelo
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
W.W. Gerberich
Affiliation:
Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
A. Franciosi
Affiliation:
Laboratorio Tecnologie Avanzate Superfici e Catalisi del Consorzio Interuniversitario di Fisica della Materia, Area di Ricerca, Padriciano 99,1-34012 Trieste, Italy. Department of Chemical Engineering and Materials Science, University of Minnesota, Minneapolis, MN 55455.
Get access

Abstract

ZnSe-GaAs(001) heterostructures have been grown by molecular beam epitaxy and characterized in situ by means of reflection high energy electron diffraction and x-ray photoemission spectroscopy, and ex-situ by near edge photoluminescence spectroscopy and by cross sectional transmission electron microscopy. By changing the Zn/Se flux intensity ratio (we explored the 0.1-10 range) we were able to control the Zn/Se relative concentration in the interface region, while maintaining a similar structure and high degree of long range order at the interface. Correspondingly, the valence band discontinuity is found to vary from 0.6eV (Se-rich interface) to 1.2eV (Zn-rich interface) in the interface composition range examined.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Haase, M. A., Qiu, J., DePuydt, J. M., and Cheng, H., Appl. Phys. Lett. 59, 1272 (1991).Google Scholar
2 Jeon, H., Ding, J., Patterson, W., Nurmikko, A. V., Xie, W., Grillo, D. C., Kobayashi, M., and Gunshor, R. L., Appl. Phys. Lett. 59, 3619 (1991).Google Scholar
3 Kowalczyk, S. P., Kraut, E. A., Waldrop, J. R., and Grant, R. W., J. Vac. Sci. Technol. 21, 482 (1982). In a later paper the same authors modified the values of the Ga 3d and Zn 3d binding energies in bulk standards: J. R. Waldrop, R. W. Grant, and E. A. Kraut, J. Vac. Sci. Technol. B 5, 1209 (1987). With such modifications the valence band offsets become 1.08±0.04eV for ZnSe deposition at room temperature followed by annealing at 300°C, and 0.94±0.04eV for ZnSe deposition at 300°C.Google Scholar
4 Vanzetti, L., Yu, X., Raisanen, A., Sorba, L., Haugstad, G., Bratina, G., and Franciosi, A., J. Cryst. Growth 117, 573 (1992).Google Scholar
5 Harrison, W.A., Kraut, E.A., Waldrop, J.R., and Grant, R.W., Phys. Rev. B 18, 4402 (1978).Google Scholar
6 Kunc, K. and Martin, R.M., Phys. Rev. B 24, 3445 (1981).Google Scholar
7 See Baroni, S., Resta, R., Baldereschi, A., and Peressi, M., in Spectroscopy of Semiconductor Microstructures, Fasol, G., Fasolino, A., and Lugli, P., eds. (Plenum, London, 1989).Google Scholar
8 Bratina, G., Vanzetti, L., Nicolini, R., Sorba, L., Yu, X., Franciosi, A., Guido, Mula, and Mura, A., Physica B 185, 557 (1993).Google Scholar
9 Bratina, G., Nicolini, R., Sorba, L., Vanzetti, L., Guido, Mula, Yu, X., and Franciosi, A., J. Cryst. Growth 127, 387 (1993).Google Scholar
10 Sorba, L., Bratina, G., Antonini, A., Franciosi, A., Tapfer, L., Migliori, A., and Merli, P., Phys. Rev. B 46, 6834 (1992), and references therein.Google Scholar
11 Yao, T. and Takeda, T., Appl. Phys. Lett. 48, 160 (1986); M. C. Tamargo, J. L. de Miguel, D. M. Hwang, and H. H. Farrel, J. Vac. Sci. Technol. B 6, 784 (1988).Google Scholar
12 Nicolini, R., Vanzetti, L., Guido, Mula, Bratina, G., Sorba, L., Franciosi, A. , Peressi, M., Baroni, S., Resta, R., Baldereschi, A., Angelo, J.E., and Gerberich, W.W., Phys. Rev. Lett, (in press).Google Scholar
13 Shahzad, K., Olego, D.J., Cammack, D.A., Phys. Rev. B 39, 13016 (1989).Google Scholar
14 Kukimoto, H., J. Cryst. Growth 101, 953 (1990).Google Scholar
15 Isshiki, M., Masumoto, K., Uchida, W., Satoh, S., Jpn. J. Appl. Phys. 30, 515 (1991).Google Scholar
16 Saraie, J., Matsumura, N., Tsubokura, M., Miyagawa, K., and Nakamura, N., Jpn. J. Appl. Phys. 28, L108 (1989).Google Scholar